🚀 SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
✨ Features
- Tags: sentence-transformers, sentence-similarity, feature-extraction, generated_from_trainer, dataset_size:77201, loss:CosineSimilarityLoss
- Widget examples are provided to demonstrate sentence similarity comparisons.
📦 Installation
First install the Sentence Transformers library:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("gmunkhtur/paraphrase-mongolian-minilm-mn_v2")
sentences = [
'"Сэтгүүлч анд маань хоёр дахь номоо хэвлэлтээс гаргажээ"',
'"Л.Болормаагийн хоёр дахь ном “Завгүй” хэмээн нэрийджээ."',
'БНХАУ-ын аж үйлдвэрлэлийн үйлдвэрлэлт буурсан.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
📚 Documentation
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Evaluation
Metrics - Semantic Similarity
Metric |
dev-t |
test-t |
pearson_cosine |
0.9547 |
0.9564 |
spearman_cosine |
0.9538 |
0.9567 |
Training Details
Training Dataset - csv
Evaluation Dataset - csv
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
num_train_epochs
: 5
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
Validation Loss |
dev-t_spearman_cosine |
test-t_spearman_cosine |
0 |
0 |
- |
- |
1.0000 |
- |
0.1727 |
500 |
0.0046 |
- |
- |
- |
0.3454 |
1000 |
0.0054 |
0.0042 |
0.9549 |
- |
0.5181 |
1500 |
0.0069 |
- |
- |
- |
0.6908 |
2000 |
0.008 |
0.0067 |
0.9298 |
- |
0.8636 |
2500 |
0.0076 |
- |
- |
- |
1.0363 |
3000 |
0.0075 |
0.0065 |
0.9317 |
- |
1.2090 |
3500 |
0.0069 |
- |
- |
- |
1.3817 |
4000 |
0.0063 |
0.0063 |
0.9366 |
- |
1.5544 |
4500 |
0.0055 |
- |
- |
- |
1.7271 |
5000 |
0.0049 |
0.0057 |
0.9411 |
- |
1.8998 |
5500 |
0.0045 |
- |
- |
- |
2.0725 |
6000 |
0.0045 |
0.0056 |
0.9405 |
- |
2.2453 |
6500 |
0.004 |
- |
- |
- |
2.4180 |
7000 |
0.0038 |
0.0053 |
0.9432 |
- |
2.5907 |
7500 |
0.0034 |
- |
- |
- |
2.7634 |
8000 |
0.0032 |
0.0053 |
0.9448 |
- |
2.9361 |
8500 |
0.0029 |
- |
- |
- |
3.1088 |
9000 |
0.0028 |
0.0051 |
0.9459 |
- |
3.2815 |
9500 |
0.0025 |
- |
- |
- |
3.4542 |
10000 |
0.0023 |
0.0047 |
0.9498 |
- |
3.6269 |
10500 |
0.0022 |
- |
- |
- |
3.7997 |
11000 |
0.0021 |
0.0046 |
0.9510 |
- |
3.9724 |
11500 |
0.0019 |
- |
- |
- |
4.1451 |
12000 |
0.0019 |
0.0046 |
0.9525 |
- |
4.3178 |
12500 |
0.0016 |
- |
- |
- |
4.4905 |
13000 |
0.0016 |
0.0045 |
0.9528 |
- |
4.6632 |
13500 |
0.0014 |
- |
- |
- |
4.8359 |
14000 |
0.0013 |
0.0044 |
0.9538 |
- |
5.0 |
14475 |
- |
- |
- |
0.9567 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
📄 Citation
BibTeX - Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}