Mental Health Harmonisation 1
This is a fine-tuned sentence transformer model based on sentence-transformers/all-mpnet-base-v2, designed to map text into a 768-dimensional vector space, supporting tasks such as semantic similarity computation.
Downloads 132
Release Time : 3/10/2025
Model Overview
The model is primarily used for semantic textual similarity, semantic search, paraphrase mining, text classification, and clustering tasks, capable of converting sentences and paragraphs into dense vector representations.
Model Features
High-Dimensional Vector Representation
Maps text to a 768-dimensional dense vector space, capturing deep semantic features.
Semantic Similarity Computation
Supports precise calculation of semantic similarity between sentences using cosine similarity.
Multi-Task Support
Can be used for various downstream tasks such as semantic search, text classification, and clustering.
Model Capabilities
Semantic Textual Similarity Computation
Semantic Search
Paraphrase Mining
Text Classification
Text Clustering
Use Cases
Mental Health Assessment
Symptom Description Similarity Analysis
Analyzes the semantic similarity between patients' descriptions of psychological symptoms and standard symptom expressions.
Pearson cosine similarity 0.568, Spearman cosine similarity 0.553
Intelligent Customer Service
User Query Matching
Matches the semantic similarity between user queries and knowledge base questions.
๐ SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This SentenceTransformer model maps sentences and paragraphs to a 768 - dimensional dense vector space. It can be used for various tasks such as semantic textual similarity, semantic search, paraphrase mining, text classification, and clustering.
โจ Features
- High - dimensional Embedding: Maps text to a 768 - dimensional vector space.
- Multiple Applications: Suitable for semantic similarity, search, and more.
- Fine - tuned: Based on the
sentence-transformers/all-mpnet-base-v2
model.
๐ฆ Installation
First, you need to install the Sentence Transformers library:
pip install -U sentence-transformers
๐ป Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'I am not good at expressing my true feelings by the way I talk and look.',
'Felt nervous or anxious?',
'Experienced sleep disturbances?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
๐ Documentation
Model Details
Model Description
Property | Details |
---|---|
Model Type | Sentence Transformer |
Base model | sentence-transformers/all-mpnet-base-v2 |
Maximum Sequence Length | 384 tokens |
Output Dimensionality | 768 dimensions |
Similarity Function | Cosine Similarity |
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Evaluation
Metrics - Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.568 |
spearman_cosine | 0.5533 |
Training Details
Training Dataset - Unnamed Dataset
- Size: 2,351 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 16.73 tokens
- max: 47 tokens
- min: 5 tokens
- mean: 14.82 tokens
- max: 28 tokens
- min: 0.0
- mean: 0.26
- max: 1.0
- Samples:
sentence1 sentence2 score Do you believe in telepathy (mind-reading)?
I believe that there are secret signs in the world if you just know how to look for them.
0.15
Irritable behavior, angry outbursts, or acting aggressively?
Felt โon edgeโ?
0.62
I have some eccentric (odd) habits.
I often have difficulty following what someone is saying to me.
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.L1Loss" }
Evaluation Dataset - Unnamed Dataset
- Size: 236 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 236 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 16.4 tokens
- max: 47 tokens
- min: 5 tokens
- mean: 14.76 tokens
- max: 28 tokens
- min: 0.0
- mean: 0.29
- max: 1.0
- Samples:
sentence1 sentence2 score Feeling afraid as if something awful might happen?
I have trouble following conversations with others.
0.19
Do you believe in telepathy (mind-reading)?
Feeling jumpy or easily startled?
0.1
Other people see me as slightly eccentric (odd).
I have felt that there were messages for me in the way things were arranged, like furniture in a room.
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.L1Loss" }
Training Hyperparameters
Non - Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
---|---|---|---|---|
0.0680 | 10 | 0.2239 | - | - |
0.1361 | 20 | 0.2188 | - | - |
0.2041 | 30 | 0.2007 | - | - |
0.2721 | 40 | 0.2045 | - | - |
0.3401 | 50 | 0.2179 | 0.2197 | - |
0.4082 | 60 | 0.2106 | - | - |
0.4762 | 70 | 0.2124 | - | - |
0.5442 | 80 | 0.2046 | - | - |
0.6122 | 90 | 0.2069 | - | - |
0.6803 | 100 | 0.1965 | 0.2112 | - |
0.7483 | 110 | 0.2355 | - | - |
0.8163 | 120 | 0.2012 | - | - |
0.8844 | 130 | 0.2402 | - | - |
0.9524 | 140 | 0.2173 | - | - |
1.0204 | 150 | 0.1763 | 0.2043 | - |
1.0884 | 160 | 0.1862 | - | - |
1.1565 | 170 | 0.1854 | - | - |
1.2245 | 180 | 0.193 | - | - |
1.2925 | 190 | 0.1852 | - | - |
1.3605 | 200 | 0.1908 | 0.1950 | - |
1.4286 | 210 | 0.2002 | - | - |
1.4966 | 220 | 0.1945 | - | - |
1.5646 | 230 | 0.193 | - | - |
1.6327 | 240 | 0.1893 | - | - |
1.7007 | 250 | 0.171 | 0.1937 | - |
1.7687 | 260 | 0.1848 | - | - |
1.8367 | 270 | 0.1909 | - | - |
1.9048 | 280 | 0.2138 | - | - |
1.9728 | 290 | 0.2014 | - | - |
2.0408 | 300 | 0.1855 | 0.1867 | - |
2.1088 | 310 | 0.1891 | - | - |
2.1769 | 320 | 0.1849 | - | - |
2.2449 | 330 | 0.1741 | - | - |
2.3129 | 340 | 0.1775 | - | - |
2.3810 | 350 | 0.178 | 0.1871 | - |
2.4490 | 360 | 0.1778 | - | - |
2.5170 | 370 | 0.174 | - | - |
2.5850 | 380 | 0.1654 | - | - |
2.6531 | 390 | 0.1954 | - | - |
2.7211 | 400 | 0.1584 | 0.1860 | - |
2.7891 | 410 | 0.2019 | - | - |
2.8571 | 420 | 0.1941 | - | - |
2.9252 | 430 | 0.1855 | - | - |
2.9932 | 440 | 0.1823 | - | - |
3.0 | 441 | - | - | 0.5533 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
๐ Citation
BibTeX - Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models
ยฉ 2025AIbase