🚀 new5558/chula-course-paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space, useful for tasks like clustering or semantic search.
🚀 Quick Start
This model can be used in two ways, either with sentence-transformers
or directly with HuggingFace Transformers
.
📦 Installation
If you want to use the sentence-transformers
approach, you need to install the library first:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage with Sentence-Transformers
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('new5558/chula-course-paraphrase-multilingual-mpnet-base-v2')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage with HuggingFace Transformers
Without sentence-transformers
, you can use the model by passing your input through the transformer model and then applying the right pooling operation on top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('new5558/chula-course-paraphrase-multilingual-mpnet-base-v2')
model = AutoModel.from_pretrained('new5558/chula-course-paraphrase-multilingual-mpnet-base-v2')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 49314 with parameters:
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Parameters of the fit()-Method:
{
"epochs": 1,
"evaluation_steps": 2000,
"evaluator": "__main__.EmbeddingSimilarityOptimizedEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
Property |
Details |
Model Type |
Sentence-Transformers |
Tags |
sentence-transformers, feature-extraction, sentence-similarity, transformers |
Pipeline Tag |
sentence-similarity |