๐ sentence-bert-base
This is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space. It can be used for tasks such as clustering or semantic search. It was trained on stsb.
If you like this project, consider supporting it with a cup of coffee! ๐คโจ๐

๐ Quick Start
๐ฆ Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
๐ป Usage Examples
Basic Usage
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["Questo รจ un esempio di frase", "Questo รจ un ulteriore esempio"]
model = SentenceTransformer('efederici/sentence-bert-base')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["Questo รจ un esempio di frase", "Questo รจ un ulteriore esempio"]
tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-bert-base')
model = AutoModel.from_pretrained('efederici/sentence-bert-base')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
๐ง Technical Details
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
๐ Documentation
Citation
If you want to cite this model you can use this:
@misc {edoardo_federici_2022,
author = { {Edoardo Federici} },
title = { sentence-bert-base, sentence-transformer for Italian },
year = 2022,
url = { https://huggingface.co/efederici/sentence-bert-base },
doi = { 10.57967/hf/0112 },
publisher = { Hugging Face }
}
๐ License
No license information provided in the original document.