đ xls-r-1B-te
This model is a fine - tuned version of facebook/wav2vec2-xls-r-1b on the OPENSLR_SLR66 - NA dataset, which is used for automatic speech recognition and achieves good results in evaluation.
đ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-xls-r-1b on the OPENSLR_SLR66 - NA dataset.
It achieves the following results on the evaluation set:
Evaluation metrics
Metric |
Split |
Decode with LM |
Value |
WER |
Train |
No |
5.36 |
CER |
Train |
No |
1.11 |
WER |
Test |
No |
26.14 |
CER |
Test |
No |
4.93 |
WER |
Train |
Yes |
5.04 |
CER |
Train |
Yes |
1.07 |
WER |
Test |
Yes |
20.69 |
CER |
Test |
Yes |
3.986 |
⨠Features
- Automatic Speech Recognition: Specifically designed for automatic speech recognition tasks.
- Fine - Tuned: Based on the pre - trained [facebook/wav2vec2-xls-r-1b] model, fine - tuned on the OPENSLR_SLR66 - NA dataset.
- Multiple Metrics Evaluation: Evaluated using metrics such as WER and CER, providing comprehensive performance assessment.
đ Documentation
Model Index
Property |
Details |
Name |
xls - r - 1B - te |
Task Type |
Automatic Speech Recognition |
Dataset |
Open SLR (SLR66) |
Metrics |
- Test WER: 20.624
- Test CER: 3.979
- Test WER (without LM): 26.14777618364419
- Test CER (without LM): 4.932543184970369
|
Training and Evaluation
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e - 05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 150.0
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
2.9038 |
4.8 |
500 |
3.0125 |
1.0 |
1.3777 |
9.61 |
1000 |
0.8681 |
0.8753 |
1.1436 |
14.42 |
1500 |
0.6256 |
0.7961 |
1.0997 |
19.23 |
2000 |
0.5244 |
0.6875 |
1.0363 |
24.04 |
2500 |
0.4585 |
0.6276 |
0.7996 |
28.84 |
3000 |
0.4072 |
0.5295 |
0.825 |
33.65 |
3500 |
0.3590 |
0.5222 |
0.8018 |
38.46 |
4000 |
0.3678 |
0.4671 |
0.7545 |
43.27 |
4500 |
0.3474 |
0.3962 |
0.7375 |
48.08 |
5000 |
0.3224 |
0.3869 |
0.6198 |
52.88 |
5500 |
0.3233 |
0.3630 |
0.6608 |
57.69 |
6000 |
0.3029 |
0.3308 |
0.645 |
62.5 |
6500 |
0.3195 |
0.3722 |
0.5249 |
67.31 |
7000 |
0.3004 |
0.3202 |
0.4875 |
72.11 |
7500 |
0.2826 |
0.2992 |
0.5171 |
76.92 |
8000 |
0.2962 |
0.2976 |
0.4974 |
81.73 |
8500 |
0.2990 |
0.2933 |
0.4387 |
86.54 |
9000 |
0.2834 |
0.2755 |
0.4511 |
91.34 |
9500 |
0.2886 |
0.2787 |
0.4112 |
96.15 |
10000 |
0.3093 |
0.2976 |
0.4064 |
100.96 |
10500 |
0.3123 |
0.2863 |
0.4047 |
105.77 |
11000 |
0.2968 |
0.2719 |
0.3519 |
110.57 |
11500 |
0.3106 |
0.2832 |
0.3719 |
115.38 |
12000 |
0.3030 |
0.2737 |
0.3669 |
120.19 |
12500 |
0.2964 |
0.2714 |
0.3386 |
125.0 |
13000 |
0.3101 |
0.2714 |
0.3137 |
129.8 |
13500 |
0.3063 |
0.2710 |
0.3008 |
134.61 |
14000 |
0.3082 |
0.2617 |
0.301 |
139.42 |
14500 |
0.3121 |
0.2628 |
0.3291 |
144.23 |
15000 |
0.3105 |
0.2612 |
0.3133 |
149.04 |
15500 |
0.3114 |
0.2624 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
đ License
This model is licensed under the Apache - 2.0 license.