đ wav2vec2-xls-r-300m-ab-CV8
This model is a fine - tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It can achieve high - quality automatic speech recognition, providing accurate speech - to - text conversion.
đ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset.
It achieves the following results on the evaluation set:
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
đ§ Technical Details
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
4.7729 |
0.63 |
500 |
3.0624 |
1.0021 |
2.7348 |
1.26 |
1000 |
1.0460 |
0.9815 |
1.2756 |
1.9 |
1500 |
0.4618 |
0.8309 |
1.0419 |
2.53 |
2000 |
0.3725 |
0.7449 |
0.9491 |
3.16 |
2500 |
0.3368 |
0.7345 |
0.9006 |
3.79 |
3000 |
0.3014 |
0.6936 |
0.8519 |
4.42 |
3500 |
0.2852 |
0.6767 |
0.8243 |
5.06 |
4000 |
0.2701 |
0.6504 |
0.7902 |
5.69 |
4500 |
0.2641 |
0.6221 |
0.7767 |
6.32 |
5000 |
0.2549 |
0.6192 |
0.7516 |
6.95 |
5500 |
0.2515 |
0.6179 |
0.737 |
7.59 |
6000 |
0.2408 |
0.5963 |
0.7217 |
8.22 |
6500 |
0.2429 |
0.6261 |
0.7101 |
8.85 |
7000 |
0.2366 |
0.5687 |
0.6922 |
9.48 |
7500 |
0.2277 |
0.5680 |
0.6866 |
10.11 |
8000 |
0.2242 |
0.5847 |
0.6703 |
10.75 |
8500 |
0.2222 |
0.5803 |
0.6649 |
11.38 |
9000 |
0.2247 |
0.5765 |
0.6513 |
12.01 |
9500 |
0.2182 |
0.5644 |
0.6369 |
12.64 |
10000 |
0.2128 |
0.5508 |
0.6425 |
13.27 |
10500 |
0.2132 |
0.5514 |
0.6399 |
13.91 |
11000 |
0.2116 |
0.5495 |
0.6208 |
14.54 |
11500 |
0.2105 |
0.5474 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
đ License
This model is released under the Apache 2.0 license.