đ NimaBoscarino/STPushToHub-test
This is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space. It can be applied to tasks such as clustering or semantic search.
đ Quick Start
This section will guide you through the basic usage of this model.
⨠Features
- Maps sentences and paragraphs to a 768-dimensional dense vector space.
- Applicable to tasks like clustering and semantic search.
đĻ Installation
To use this model, you need to install sentence-transformers first:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage
If you have sentence-transformers installed, you can use the model as follows:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('NimaBoscarino/STPushToHub-test')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model in the following way. First, pass your input through the transformer model, and then apply the appropriate pooling operation on top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('NimaBoscarino/STPushToHub-test')
model = AutoModel.from_pretrained('NimaBoscarino/STPushToHub-test')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
đ Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 360 with parameters:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Parameters of the fit()-Method:
{
"epochs": 4,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 144,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
đ§ Technical Details
This section provides detailed information about the model's training and architecture, including the DataLoader, loss function, training parameters, and full model architecture.
đ License
No license information provided in the original document.
Citing & Authors