đ rufimelo/Legal-BERTimbau-sts-large
This model maps sentences & paragraphs to a 1024-dimensional dense vector space, suitable for tasks like clustering or semantic search.
đ Model Information
Property |
Details |
Model Type |
Sentence-Transformers for Sentence Similarity |
Training Data |
assin, assin2, rufimelo/PortugueseLegalSentences-v0 |
đ Quick Start
đĻ Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
sentences = ["Isto Ê um exemplo", "Isto Ê um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-large')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-sts-large')
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-sts-large')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
đ Evaluation Results STS
Model |
Assin |
Assin2 |
stsb_multi_mt pt |
avg |
Legal-BERTimbau-sts-base |
0.71457 |
0.73545 |
0.72383 |
0.72462 |
Legal-BERTimbau-sts-base-ma |
0.74874 |
0.79532 |
0.82254 |
0.78886 |
Legal-BERTimbau-sts-base-ma-v2 |
0.75481 |
0.80262 |
0.82178 |
0.79307 |
Legal-BERTimbau-base-TSDAE-sts |
0.78814 |
0.81380 |
0.75777 |
0.78657 |
Legal-BERTimbau-sts-large |
0.76629 |
0.82357 |
0.79120 |
0.79369 |
Legal-BERTimbau-sts-large-v2 |
0.76299 |
0.81121 |
0.81726 |
0.79715 |
Legal-BERTimbau-sts-large-ma |
0.76195 |
0.81622 |
0.82608 |
0.80142 |
Legal-BERTimbau-sts-large-ma-v2 |
0.7836 |
0.8462 |
0.8261 |
0.81863 |
Legal-BERTimbau-sts-large-ma-v3 |
0.7749 |
0.8470 |
0.8364 |
0.81943 |
Legal-BERTimbau-large-v2-sts |
0.71665 |
0.80106 |
0.73724 |
0.75165 |
Legal-BERTimbau-large-TSDAE-sts |
0.72376 |
0.79261 |
0.73635 |
0.75090 |
Legal-BERTimbau-large-TSDAE-sts-v2 |
0.81326 |
0.83130 |
0.786314 |
0.81029 |
Legal-BERTimbau-large-TSDAE-sts-v3 |
0.80703 |
0.82270 |
0.77638 |
0.80204 |
---------------------------------------- |
---------- |
---------- |
---------- |
---------- |
BERTimbau base Fine-tuned for STS |
0.78455 |
0.80626 |
0.82841 |
0.80640 |
BERTimbau large Fine-tuned for STS |
0.78193 |
0.81758 |
0.83784 |
0.81245 |
---------------------------------------- |
---------- |
---------- |
---------- |
---------- |
paraphrase-multilingual-mpnet-base-v2 |
0.71457 |
0.79831 |
0.83999 |
0.78429 |
paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s) |
0.77641 |
0.79831 |
0.84575 |
0.80682 |
đ§ Training
rufimelo/Legal-BERTimbau-sts-large is based on Legal-BERTimbau-large which derives from BERTimbau large. It was trained for Semantic Textual Similarity, being submitted to a fine-tuning stage with the assin and assin2 datasets.
đ Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
đ Citing & Authors
If you use this work, please cite:
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
@inproceedings{fonseca2016assin,
title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
pages={13--15},
year={2016}
}
@inproceedings{real2020assin,
title={The assin 2 shared task: a quick overview},
author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
booktitle={International Conference on Computational Processing of the Portuguese Language},
pages={406--412},
year={2020},
organization={Springer}
}
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}