đ moco-sentencebertV2.0
This is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space. It can be used for tasks such as clustering or semantic search.
⨠Features
- This model is created by converting the bongsoo/mbertV2.0 MLM model into SentenceBERT and then performing additional STS teacher-student distillation training.
- Vocab: 152,537 (32,989 new vocabularies are added to the original 119,548 vocabularies).
đĻ Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence_transformers
đģ Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('bongsoo/moco-sentencebertV2.0')
embeddings = model.encode(sentences)
print(embeddings)
from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances
cosine_scores = 1 - (paired_cosine_distances(embeddings[0].reshape(1,-1), embeddings[1].reshape(1,-1)))
print(f'*cosine_score:{cosine_scores[0]}')
Outputs
[[ 0.16649279 -0.2933038 -0.00391259 ... 0.00720964 0.18175027 -0.21052675]
[ 0.10106096 -0.11454111 -0.00378215 ... -0.009032 -0.2111504 -0.15030429]]
*cosine_score:0.3352515697479248
Advanced Usage
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('bongsoo/moco-sentencebertV2.0')
model = AutoModel.from_pretrained('bongsoo/moco-sentencebertV2.0')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances
cosine_scores = 1 - (paired_cosine_distances(sentence_embeddings[0].reshape(1,-1), sentence_embeddings[1].reshape(1,-1)))
print(f'*cosine_score:{cosine_scores[0]}')
Outputs
Sentence embeddings:
tensor([[ 0.1665, -0.2933, -0.0039, ..., 0.0072, 0.1818, -0.2105],
[ 0.1011, -0.1145, -0.0038, ..., -0.0090, -0.2112, -0.1503]])
*cosine_score:0.3352515697479248
đ Documentation
Evaluation Results
- For performance measurement, the following Korean (kor) and English (en) evaluation corpora are used:
- Korean: korsts (1,379 sentence pairs) and klue-sts (519 sentence pairs).
- English: stsb_multi_mt (1,376 sentence pairs) and glue:stsb (1,500 sentence pairs).
- The performance metric is cosin.spearman for comparison.
- Refer to the evaluation measurement code here.
Model |
korsts |
klue-sts |
korsts+klue-sts |
stsb_multi_mt |
glue(stsb) |
distiluse-base-multilingual-cased-v2 |
0.747 |
0.785 |
0.577 |
0.807 |
0.819 |
paraphrase-multilingual-mpnet-base-v2 |
0.820 |
0.799 |
0.711 |
0.868 |
0.890 |
bongsoo/sentencedistilbertV1.2 |
0.819 |
0.858 |
0.630 |
0.837 |
0.873 |
bongsoo/moco-sentencedistilbertV2.0 |
0.812 |
0.847 |
0.627 |
0.837 |
0.877 |
bongsoo/moco-sentencebertV2.0 |
0.824 |
0.841 |
0.635 |
0.843 |
0.879 |
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
1. MLM Training
- Input model: bert-base-multilingual-cased
- Corpus: Training - bongsoo/moco-corpus-kowiki2022 (7.6M), Evaluation - bongsoo/bongevalsmall
- Hyperparameters: LearningRate - 5e-5, epochs - 8, batchsize - 32, max_token_len - 128
- Output model: mbertV2.0 (size: 813MB)
- Training time: 90h/1GPU (24GB/19.6GB use)
- Loss: Training loss - 2.258400, Evaluation loss - 3.102096, Perplexity - 19.78158 (bong_eval:1,500)
- Refer to the training code here.
2. STS Training
=> Convert BERT to SentenceBERT.
- Input model: mbertV2.0
- Corpus: korsts + kluestsV1.1 + stsb_multi_mt + mteb/sickr-sts (total: 33,093)
- Hyperparameters: LearningRate - 3e-5, epochs - 200, batchsize - 32, max_token_len - 128
- Output model: sbert-mbertV2.0 (size: 813MB)
- Training time: 9h20m/1GPU (24GB/9.0GB use)
- Loss (cosin_spearman): 0.799 (corpus: korsts(tune_test.tsv))
- Refer to the training code here.
3. Distillation Training
- Student model: sbert-mbertV2.0
- Teacher model: paraphrase-multilingual-mpnet-base-v2
- Corpus: en_ko_train.tsv (Korean-English social science parallel corpus: 1.1M)
- Hyperparameters: LearningRate - 5e-5, epochs - 40, batchsize - 128, max_token_len - 128
- Output model: sbert-mlbertV2.0-distil
- Training time: 17h/1GPU (24GB/18.6GB use)
- Refer to the training code here.
4. STS Training
=> Train the SentenceBERT model with STS.
- Input model: sbert-mlbertV2.0-distil
- Corpus: korsts (5,749) + kluestsV1.1 (11,668) + stsb_multi_mt (5,749) + mteb/sickr-sts (9,927) + glue stsb (5,749) (total: 38,842)
- Hyperparameters: LearningRate - 3e-5, epochs - 800, batchsize - 64, max_token_len - 128
- Output model: moco-sentencebertV2.0
- Training time: 25h/1GPU (24GB/13GB use)
- Refer to the training code here.
Refer to the detailed content of the model production process here.
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 1035 with parameters:
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Config:
{
"_name_or_path": "../../data11/model/sbert/sbert-mbertV2.0-distil",
"architectures": [
"BertModel"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"directionality": "bidi",
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"pooler_fc_size": 768,
"pooler_num_attention_heads": 12,
"pooler_num_fc_layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"position_embedding_type": "absolute",
"torch_dtype": "float32",
"transformers_version": "4.21.2",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 152537
}
đ§ Technical Details
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
đ License
No license information provided in the original document.
Citing & Authors
bongsoo