🚀 stsb-xlm-r-multilingual-ro
This is a sentence-transformers model that maps sentences & paragraphs to a 768-dimensional dense vector space. It can be used for tasks such as clustering or semantic search. It is a fine-tuned version of stsb-xlm-r-multilingual for the Romanian language.
🚀 Quick Start
✨ Features
- Maps sentences and paragraphs to a 768-dimensional dense vector space.
- Suitable for tasks like clustering and semantic search.
- Fine-tuned for the Romanian language.
📦 Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('BlackKakapo/stsb-xlm-r-multilingual-ro')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('BlackKakapo/stsb-xlm-r-multilingual-ro')
model = AutoModel.from_pretrained('BlackKakapo/stsb-xlm-r-multilingual-ro')
📚 Documentation
Training
DataSet:
STS-ro
The text dataset is in Romanian (ro). Score is from 0 to 5, that's why I divide score by 5, because the score for EmbeddingSimilarityEvaluator (evaluator for finetune) needs to be from 0 to 1.
Dataset Structure:
{
'score': 1.5,
'sentence1': 'Un bărbat cântă la harpă.',
'sentence2': 'Un bărbat cântă la claviatură.',
}
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 223 with parameters:
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Parameters of the fit()-Method:
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
BlackKakapo
📄 License
No license information provided in the original document, so this section is skipped.
🔧 Technical Details
No additional technical details provided in the original document, so this section is skipped.
Property |
Details |
Pipeline Tag |
sentence-similarity |
Tags |
sentence-transformers, feature-extraction, sentence-similarity, transformers |
Language |
ro |
Language Creators |
machine-generated |
Dataset |
ro_sts |