🚀 airnicco8/xlm-roberta-de
This is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space. It can be used for tasks such as clustering or semantic search. The model is trained on Ted talks transcripts filtered by the German language. The training setting is detailed here. It can be directly used for sentence similarity and can also be fine-tuned for NLI and text classification. Examples will be provided soon.
✨ Features
- Maps sentences and paragraphs to a 768-dimensional dense vector space.
- Can be used for clustering and semantic search.
- Applicable for sentence similarity tasks and can be fine - tuned for NLI and text classification.
📦 Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
If you have sentence-transformers installed:
from sentence_transformers import SentenceTransformer
sentences = ["das ist eine glückliche Frau", "das ist ein glücklicher Mann", "das ist ein glücklicher Hund"]
model = SentenceTransformer('airnicco8/xlm-roberta-de')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["das ist eine glückliche Frau", "das ist ein glücklicher Mann", "das ist ein glücklicher Hund"]
tokenizer = AutoTokenizer.from_pretrained('airnicco8/xlm-roberta-de')
model = AutoModel.from_pretrained('airnicco8/xlm-roberta-de')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 3071 with parameters:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.MSELoss.MSELoss
Parameters of the fit()-Method:
{
"epochs": 10,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
Property |
Details |
Pipeline Tag |
sentence-similarity |
Tags |
sentence-transformers, feature-extraction, sentence-similarity, transformers, german, nli, text-classification |