🚀 pritamdeka/PubMedBERT-mnli-snli-scinli-scitail-mednli-stsb
This is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space. It can be used for tasks such as clustering or semantic search. The model has been trained on the SNLI, MNLI, SCINLI, SCITAIL, MEDNLI, and STSB datasets to provide robust sentence embeddings.
🚀 Quick Start
This model is a sentence-transformers model. It maps sentences and paragraphs to a 768-dimensional dense vector space and can be used for tasks like clustering or semantic search. It has been trained on the SNLI, MNLI, SCINLI, SCITAIL, MEDNLI, and STSB datasets to provide robust sentence embeddings.
✨ Features
- Maps sentences and paragraphs to a 768-dimensional dense vector space.
- Suitable for tasks like clustering or semantic search.
- Trained on multiple datasets (SNLI, MNLI, SCINLI, SCITAIL, MEDNLI, STSB) to provide robust sentence embeddings.
📦 Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('pritamdeka/PubMedBERT-mnli-snli-scinli-scitail-mednli-stsb')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('pritamdeka/PubMedBERT-mnli-snli-scinli-scitail-mednli-stsb')
model = AutoModel.from_pretrained('pritamdeka/PubMedBERT-mnli-snli-scinli-scitail-mednli-stsb')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 90 with parameters:
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Parameters of the fit()-Method:
{
"epochs": 4,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 36,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
If you use the model kindly cite the following work
@inproceedings{deka2022evidence,
title={Evidence Extraction to Validate Medical Claims in Fake News Detection},
author={Deka, Pritam and Jurek-Loughrey, Anna and others},
booktitle={International Conference on Health Information Science},
pages={3--15},
year={2022},
organization={Springer}
}