🚀 {MODEL_NAME}
This is a sentence-transformers model that maps sentences and paragraphs to a 512-dimensional dense vector space, which can be used for tasks such as clustering or semantic search.
🚀 Quick Start
This section provides two ways to use the {MODEL_NAME} model, one is through the sentence-transformers
library, and the other is through the HuggingFace Transformers
library.
✨ Features
- Maps sentences and paragraphs to a 512-dimensional dense vector space.
- Can be used for clustering or semantic search tasks.
📦 Installation
If you want to use the sentence-transformers
library to run the model, you need to install it first:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
Using sentence-transformers
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
Using HuggingFace Transformers
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 187841 with parameters:
{'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
__main__.BregmanRankingLoss
Parameters of the fit()-Method:
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 3e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 5000,
"warmup_steps": 187841,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LongformerModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors