🚀 TeluguSBERT-STS
This is a TeluguSBERT model (l3cube-pune/telugu-sentence-bert-nli) fine-tuned on the STS dataset. It is released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP. A multilingual version of this model supporting major Indic languages and cross-lingual sentence similarity is shared here.
More details on the dataset, models, and baseline results can be found in our paper.
📄 License
The model is released under the CC BY 4.0 license.
📚 Documentation
BibTeX Citations
@article{deode2023l3cube,
title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
journal={arXiv preprint arXiv:2304.11434},
year={2023}
}
@article{joshi2022l3cubemahasbert,
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
journal={arXiv preprint arXiv:2211.11187},
year={2022}
}
Related Papers
Other Monolingual Similarity Models
Other Monolingual Indic Sentence BERT Models
🚀 Quick Start
📦 Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage with Sentence-Transformers
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage with HuggingFace Transformers
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📋 Model Details
Property |
Details |
Model Type |
Fine-tuned TeluguSBERT model on STS dataset |
Training Data |
STS dataset |
Pipeline Tag |
sentence-similarity |
Tags |
sentence-transformers, feature-extraction, sentence-similarity, transformers |
🎛️ Widget Examples
The model comes with some widget examples to demonstrate its usage:
- Example 1:
- Source Sentence: "ఒక మహిళ ఉల్లిపాయను కత్తిస్తోంది"
- Comparison Sentences:
- "ఒక స్త్రీ ఉల్లిపాయలు కోస్తోంది"
- "ఒక స్త్రీ బంగాళాదుంపను తొక్కడం"
- "ఒక పిల్లి ఇంటి చుట్టూ నడుస్తోంది"
- Example 2:
- Source Sentence: "పిల్లల బృందం జంపింగ్ పోటీని నిర్వహిస్తోంది"
- Comparison Sentences:
- "పిల్లల గుంపు సరదాగా గడుపుతోంది"
- "పిల్లలు పార్కులో ఆడుకోవడానికి ఇష్టపడతారు"
- "ముగ్గురు అబ్బాయిలు నడుస్తున్నారు"
- Example 3:
- Source Sentence: "మీ రెండు ప్రశ్నలకు అవుననే సమాధానం వస్తుంది"
- Comparison Sentences:
- "రెండు ప్రశ్నలకు అవుననే సమాధానం వస్తోంది"
- "మేము మీ అన్ని ప్రశ్నలకు సమాధానమిచ్చాము"
- "నేను ఈ ప్రశ్నకు సమాధానం ఇస్తాను"