đ BengaliSBERT-STS
This is a BengaliSBERT model (l3cube-pune/bengali-sentence-bert-nli
) fine - tuned on the STS dataset. It is released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP. A multilingual version of this model supporting major Indic languages and cross - lingual sentence similarity is shared here indic - sentence - similarity - sbert.
More details on the dataset, models, and baseline results can be found in our paper.
đ Quick Start
Model Information
Property |
Details |
Pipeline Tag |
Sentence - Similarity |
Tags |
sentence - transformers, feature - extraction, sentence - similarity, transformers |
License |
cc - by - 4.0 |
Language |
Bengali (bn) |
Widget Examples
Example 1
- Source Sentence: "āϞā§āĻāĻāĻŋ āĻā§āĻĄāĻŧāĻžāϞ āĻĻāĻŋāϝāĻŧā§ āĻāĻāĻāĻŋ āĻāĻžāĻ āĻā§āĻā§ āĻĢā§āϞāϞ"
- Comparison Sentences:
- "āĻāĻāĻāύ āϞā§āĻ āĻā§āĻĄāĻŧāĻžāϞ āĻĻāĻŋāϝāĻŧā§ āĻāĻāĻāĻŋ āĻāĻžāĻā§āϰ āύāĻŋāĻā§ āĻāĻĒ āĻāϰā§"
- "āĻāĻāĻāύ āϞā§āĻ āĻāĻŋāĻāĻžāϰ āĻŦāĻžāĻāĻā§"
- "āĻāĻāĻāύ āĻŽāĻšāĻŋāϞāĻž āĻā§āĻĄāĻŧāĻžāϝāĻŧ āĻāĻĄāĻŧā§"
Example 2
- Source Sentence: "āĻāĻāĻāĻŋ āĻā§āϞāĻžāĻĒā§ āϏāĻžāĻāĻā§āϞ āĻāĻāĻāĻŋ āĻŦāĻŋāϞā§āĻĄāĻŋāĻāϝāĻŧā§āϰ āϏāĻžāĻŽāύ⧠āϰāϝāĻŧā§āĻā§"
- Comparison Sentences:
- "āĻāĻŋāĻā§ āϧā§āĻŦāĻāϏāĻžāĻŦāĻļā§āώā§āϰ āϏāĻžāĻŽāύ⧠āĻāĻāĻāĻŋ āϏāĻžāĻāĻā§āϞ"
- "āĻā§āϞāĻžāĻĒā§ āĻĻā§āĻāĻŋ āĻā§āĻ āĻŽā§āϝāĻŧā§ āύāĻžāĻāĻā§"
- "āĻā§āĻĄāĻŧāĻž āĻāĻžāĻā§āϰ āϞāĻžāĻāύā§āϰ āϏāĻžāĻŽāύ⧠āĻŽāĻžāĻ ā§ āĻāĻžāϰāĻŖ āĻāϰāĻā§"
Example 3
- Source Sentence: "āĻāϞā§āϰ āĻāϤāĻŋ āϏāϏā§āĻŽ āĻšāĻāϝāĻŧāĻžāϰ āĻāϤāĻŋ āĻāĻŽāĻžāĻĻā§āϰ āĻŽāĻšāĻžāĻŦāĻŋāĻļā§āĻŦā§āϰ āĻ
āύā§āϝāϤāĻŽ āĻŽā§āϞāĻŋāĻ"
- Comparison Sentences:
- "āĻāϞā§āϰ āĻāϤāĻŋ āĻāϤ?"
- "āĻāϞā§āϰ āĻāϤāĻŋ āϏāϏā§āĻŽ"
- "āĻāϞ⧠āĻŽāĻšāĻžāĻŦāĻŋāĻļā§āĻŦā§āϰ āĻĻā§āϰā§āϤāϤāĻŽ āĻāĻŋāύāĻŋāϏ"
⨠Features
- Fine - tuned on the STS dataset for better sentence similarity performance.
- Part of the MahaNLP project, contributing to the NLP research in Indic languages.
- A multilingual version is available for cross - lingual sentence similarity tasks.
đĻ Installation
Using this model becomes easy when you have sentence - transformers installed:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage (Sentence - Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage (HuggingFace Transformers)
Without sentence - transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling - operation on - top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
đ Documentation
Related Papers
@article{deode2023l3cube,
title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
journal={arXiv preprint arXiv:2304.11434},
year={2023}
}
@article{joshi2022l3cubemahasbert,
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
journal={arXiv preprint arXiv:2211.11187},
year={2022}
}
Other Related Models
Monolingual Similarity Models
Monolingual Indic Sentence BERT Models
đ License
This model is released under the cc - by - 4.0 license.