🚀 KannadaSBERT-STS
This is a KannadaSBERT model (l3cube-pune/kannada-sentence-bert-nli
) fine - tuned on the STS dataset. It is released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP. A multilingual version of this model supporting major Indic languages and cross - lingual sentence similarity is shared here.
More details on the dataset, models, and baseline results can be found in our paper.
🚀 Quick Start
✨ Features
- This is a fine - tuned KannadaSBERT model on the STS dataset.
- It is part of the MahaNLP project.
- There is a multilingual version supporting major Indic languages and cross - lingual sentence similarity.
📦 Installation
Using this model becomes easy when you have sentence - transformers installed:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage (Sentence - Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage (HuggingFace Transformers)
Without sentence - transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling - operation on - top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 Documentation
- Model Details: This is a KannadaSBERT model fine - tuned on the STS dataset.
- Project Link: Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP.
- Multilingual Version: A multilingual version supporting major Indic languages and cross - lingual sentence similarity is available here.
- Paper Reference: More details can be found in our paper.
📄 License
This model is released under the cc - by - 4.0
license.
BibTeX References
@article{deode2023l3cube,
title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
journal={arXiv preprint arXiv:2304.11434},
year={2023}
}
@article{joshi2022l3cubemahasbert,
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
journal={arXiv preprint arXiv:2211.11187},
year={2022}
}
Other Related Models
- Monolingual Similarity Models:
- Monolingual Indic Sentence BERT Models:
Widget Examples
- Example 1:
- Source Sentence: "ನಮ್ಮ ಪರಿಸರದ ಬಗ್ಗೆ ನಾವು ಕಾಳಜಿ ವಹಿಸಬೇಕು"
- Comparison Sentences:
- "ನಮ್ಮ ಪರಿಸರವನ್ನು ಸ್ವಚ್ಛವಾಗಿಟ್ಟುಕೊಳ್ಳೋಣ"
- "ಜಾಗತಿಕ ತಾಪಮಾನವು ಗಂಭೀರ ಸಮಸ್ಯೆಯಾಗಿದೆ"
- "ಹೆಚ್ಚು ಮರಗಳನ್ನು ನೆಡಿ"
- Example 2:
- Source Sentence: "ಕೆಲವರು ಹಾಡುತ್ತಿದ್ದಾರೆ"
- Comparison Sentences:
- "ಜನರ ಗುಂಪು ಹಾಡುತ್ತಿದೆ"
- "ಬೆಕ್ಕು ಹಾಲು ಕುಡಿಯುತ್ತಿದೆ"
- "ಇಬ್ಬರು ಪುರುಷರು ಜಗಳವಾಡುತ್ತಿದ್ದಾರೆ"
- Example 3:
- Source Sentence: "ಫೆಡರರ್ ವಿಂಬಲ್ಡನ್ ಪ್ರಶಸ್ತಿ ಗೆದ್ದಿದ್ದಾರೆ"
- Comparison Sentences:
- "ಫೆಡರರ್ ತಮ್ಮ ವೃತ್ತಿಜೀವನದಲ್ಲಿ ಒಟ್ಟು 20 ಗ್ರ್ಯಾನ್ ಸ್ಲಾಮ್ ಪ್ರಶಸ್ತಿಗಳನ್ನು ಗೆದ್ದಿದ್ದಾರೆ "
- "ಫೆಡರರ್ ಸೆಪ್ಟೆಂಬರ್ನಲ್ಲಿ ನಿವೃತ್ತಿ ಘೋಷಿಸಿದರು"
- "ಒಬ್ಬ ಮನುಷ್ಯ ಒಂದು ಪಾತ್ರೆಯಲ್ಲಿ ಸ್ವಲ್ಪ ಅಡುಗೆ ಎಣ್ಣೆಯನ್ನು ಸುರಿಯುತ್ತಾನೆ"