🚀 TamilSBERT
TamilSBERT is a sentence similarity model. It is a TamilBERT model (l3cube - pune/tamil - bert) trained on the NLI dataset. This model is released as a part of project MahaNLP. A multilingual version supporting major Indic languages and cross - lingual capabilities is also available.
📋 Metadata
Property |
Details |
Pipeline Tag |
sentence - similarity |
Tags |
sentence - transformers, feature - extraction, sentence - similarity, transformers |
License |
cc - by - 4.0 |
Language |
ta |
🎛️ Widget Examples
Example 1
- Source Sentence: "மக்கள் குழு பாடுகிறது"
- Comparison Sentences:
- "சிலர் பாடுகிறார்கள்"
- "ஒரு இளைஞன் பியானோ பாடுகிறான்"
- "மனிதன் ஒரு கடிதம் எழுதுகிறான்"
Example 2
- Source Sentence: "நாய் பொம்மையை குரைக்கிறது"
- Comparison Sentences:
- "ஒரு நாய் ஒரு பொம்மையில் குரைக்கிறது"
- "ஒரு பூனை பால் குடிக்கிறது"
- "ஒரு நாய் ஒரு பந்தைத் துரத்துகிறது"
Example 3
- Source Sentence: "நான் முதல் முறையாக விமானத்தில் அமர்ந்தேன்"
- Comparison Sentences:
- "அது எனது முதல் விமானப் பயணம் "
- "முதல் முறையாக ரயிலில் அமர்ந்தேன்"
- "புதிய இடங்களுக்கு பயணம் செய்வது எனக்கு மிகவும் பிடிக்கும்"
🚀 Quick Start
This model can be used in two ways, with or without the sentence - transformers
library.
📦 Installation
If you want to use the sentence - transformers
library, you need to install it first:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage with Sentence - Transformers
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage without Sentence - Transformers
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 Additional Information
This model is part of the project MahaNLP: https://github.com/l3cube - pune/MarathiNLP.
- A multilingual version of this model supporting major Indic languages and cross - lingual capabilities is available at indic - sentence - bert - nli .
- A better sentence similarity model (fine - tuned version of this model) is available at: https://huggingface.co/l3cube - pune/tamil - sentence - similarity - sbert.
📄 References
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2304.11434).
@article{deode2023l3cube,
title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
journal={arXiv preprint arXiv:2304.11434},
year={2023}
}
@article{joshi2022l3cubemahasbert,
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
journal={arXiv preprint arXiv:2211.11187},
year={2022}
}
🔗 Related Models
📄 License
This model is released under the cc - by - 4.0 license.