đ Brendan/refpydst-5p-referredstates-split-v1
This model is designed for sentence similarity tasks. It was initialized with sentence-transformers/all-mpnet-base-v2
and fine - tuned on a 5% few - shot split of the MultiWOZ dataset using supervised contrastive loss. It serves as an in - context example retriever with the few - shot training set provided in the linked repository. More details can be found in the repo and the associated paper. To cite this model, refer to the citation in the linked GitHub repository README.
This README is partially auto - generated from sentence_transformers
. Note that this model is not a general - purpose sentence encoder; it expects in - context examples from MultiWOZ to be formatted in a specific way. Check the linked repo for details.
It's a sentence-transformers model that maps sentences and paragraphs to a 768 - dimensional dense vector space, useful for tasks like clustering or semantic search.
đ Quick Start
⨠Features
- Initialized with
sentence-transformers/all-mpnet-base-v2
.
- Fine - tuned on a 5% few - shot split of the MultiWOZ dataset.
- Suitable for in - context example retrieval.
đĻ Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage
If you have sentence-transformers installed:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('Brendan/refpydst-5p-referredstates-split-v1')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model like this:
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-5p-referredstates-split-v1')
model = AutoModel.from_pretrained('Brendan/refpydst-5p-referredstates-split-v1')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
đ Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 2276 with parameters:
{'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss
Parameters of the fit() - Method:
{
"epochs": 15,
"evaluation_steps": 800,
"evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
đ License
No license information provided in the original document, so this section is skipped.
Citing & Authors
Refer to the citation in the linked GitHub repository README for citing this model.