đ Adel-Elwan/msmarco-bert-base-dot-v5-fine-tuned-AI
This model is based on sentence-transformers. It maps sentences and paragraphs to a 768-dimensional dense vector space, which can be used for tasks such as clustering or semantic search.
đ Quick Start
đĻ Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('Adel-Elwan/msmarco-bert-base-dot-v5-fine-tuned-AI')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('Adel-Elwan/msmarco-bert-base-dot-v5-fine-tuned-AI')
model = AutoModel.from_pretrained('Adel-Elwan/msmarco-bert-base-dot-v5-fine-tuned-AI')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
đ Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 6563 with parameters:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'dot_score'}
Parameters of the fit()-Method:
{
"epochs": 1,
"evaluation_steps": 5000,
"evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"correct_bias": false,
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 656,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Information Table
Property |
Details |
Pipeline Tag |
question-answering |
Tags |
semantic-search, sentence-similarity, sentence-transformers, transformers, artificial-intelligence, computer-science |
Language |
en |
Metrics |
accuracy |
Datasets |
Adel-Elwan/Artificial-intelligence-dataset-for-IR-systems |
Model Index
Task Type |
Task Name |
Dataset Type |
Dataset Name |
Split |
Metrics |
semantic-search |
Semantic Search |
Adel-Elwan/Artificial-intelligence-dataset-for-IR-systems |
Artificial intelligence dataset for IR systems |
test |
Accuracy@5: 83.45%, Accuracy@10: 87.78%, Precision@5: 16.69%, Recall@5: 83.45%, Recall@10: 87.78%, MRR@10: 0.7327 (verified: true) |
đ License
No license information provided in the original document, so this section is skipped.
Citing & Authors
No detailed information provided in the original document, so this section is skipped.