🚀 BERT/MPnet base model (uncased)
This model is a sentence-transformers model that maps sentences and paragraphs into a 768-dimensional dense vector space. It can be used for tasks such as clustering or semantic search.
🚀 Quick Start
✨ Features
- Maps sentences and paragraphs to a 768-dimensional dense vector space.
- Suitable for clustering and semantic search tasks.
📦 Installation
To use this model, you need to install sentence-transformers:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
If you have sentence-transformers installed, you can use the model as follows:
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('abbasgolestani/ag-nli-bert-mpnet-base-uncased-sentence-similarity-v1') nli-mpnet-base-v2
sentences1 = ['I am honored to be given the opportunity to help make our company better',
'I love my job and what I do here',
'I am excited about our company’s vision']
sentences2 = ['I am hopeful about the future of our company',
'My work is aligning with my passion',
'Definitely our company vision will be the next breakthrough to change the world and I’m so happy and proud to work here']
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
cosine_scores = util.cos_sim(embeddings1, embeddings2)
for i in range(len(sentences1)):
print("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i]))
Advanced Usage
Without sentence-transformers, you can use the model like this: First, pass your input through the transformer model, then apply the right pooling-operation on top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('abbasgolestani/ag-nli-bert-mpnet-base-uncased-sentence-similarity-v1')
model = AutoModel.from_pretrained('abbasgolestani/ag-nli-bert-mpnet-base-uncased-sentence-similarity-v1')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 Documentation
Evaluation Results
This model has been evaluated on a local dataset with 1000 sentence pairs. The algorithm achieved an accuracy of 82% on this dataset.
Training
The model was trained with the following parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 7 with parameters:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Parameters of the fit()-Method:
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors