๐ mmarco-sentence-flare-it
This is a sentence-transformers model that maps sentences and paragraphs to a 384-dimensional dense vector space. It can be used for tasks such as clustering or semantic search.
๐ Quick Start
This model can be used easily after installing sentence-transformers.
โจ Features
- Maps sentences and paragraphs to a 384-dimensional dense vector space.
- Suitable for tasks like clustering or semantic search.
๐ฆ Installation
pip install -U sentence-transformers
๐ป Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer, util
query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra รจ conosciuta per il suo quartiere finanziario"]
model = SentenceTransformer('nickprock/mmarco-sentence-flare-it')
query_emb = model.encode(query)
doc_emb = model.encode(docs)
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
doc_score_pairs = list(zip(docs, scores))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
for doc, score in doc_score_pairs:
print(score, doc)
Advanced Usage
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def encode(texts):
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
return embeddings
query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra รจ conosciuta per il suo quartiere finanziario"]
tokenizer = AutoTokenizer.from_pretrained("nickprock/mmarco-sentence-flare-it")
model = AutoModel.from_pretrained("nickprock/mmarco-sentence-flare-it")
query_emb = encode(query)
doc_emb = encode(docs)
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
doc_score_pairs = list(zip(docs, scores))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
print("Query:", query)
for doc, score in doc_score_pairs:
print(score, doc)
๐ Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 7500 with parameters:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.TripletLoss.TripletLoss
with parameters:
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
Parameters of the fit()-Method:
{
"epochs": 10,
"evaluation_steps": 500,
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 1500,
"warmup_steps": 7500,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
More information about the base model here
๐ License
This model is licensed under the Apache-2.0 license.
Property |
Details |
Pipeline Tag |
sentence-similarity |
Tags |
sentence-transformers, feature-extraction, sentence-similarity, transformers, mteb |
License |
apache-2.0 |
Datasets |
unicamp-dl/mmarco |
Language |
it |
Library Name |
sentence-transformers |
Model Name |
mmarco-sentence-flare-it |
Results - Task 1 (Classification - mteb/amazon_massive_intent) |
Accuracy: 22.299932750504368, F1: 20.147804322480262 |
Results - Task 2 (Classification - mteb/amazon_massive_scenario) |
Accuracy: 27.40753194351042, F1: 25.187141587127705 |
Results - Task 3 (STS - mteb/sts22-crosslingual-sts) |
cos_sim_pearson: 30.67175493186678, cos_sim_spearman: 37.92638638971281, euclidean_pearson: 37.47072224334179, euclidean_spearman: 39.23036609148336, manhattan_pearson: 42.92657347688227, manhattan_spearman: 43.93955531904934 |