๐ unsup-simcse-ja-base
This model is designed for feature extraction and sentence similarity tasks, leveraging the power of sentence-transformers and transformers.
๐ Quick Start
๐ฆ Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U fugashi[unidic-lite] sentence-transformers
๐ป Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
sentences = ["ใใใซใกใฏใไธ็๏ผ", "ๆๅใ่พผใฟๆ้ซ๏ผๆๅใ่พผใฟๆ้ซใจๅซใณใชใใ", "ๆฅตๅบฆไนพ็ฅใใชใใ"]
model = SentenceTransformer("cl-nagoya/unsup-simcse-ja-base")
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained("cl-nagoya/unsup-simcse-ja-base")
model = AutoModel.from_pretrained("cl-nagoya/unsup-simcse-ja-base")
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
๐ Documentation
๐ง Technical Details
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Model Summary
Property |
Details |
Fine-tuning method |
Unsupervised SimCSE |
Base model |
cl-tohoku/bert-base-japanese-v3 |
Training dataset |
Wiki40B |
Pooling strategy |
cls (with an extra MLP layer only during training) |
Hidden size |
768 |
Learning rate |
5e-5 |
Batch size |
64 |
Temperature |
0.05 |
Max sequence length |
64 |
Number of training examples |
2^20 |
Validation interval (steps) |
2^6 |
Warmup ratio |
0.1 |
Dtype |
BFloat16 |
See the GitHub repository for a detailed experimental setup.
๐ License
This model is released under the cc-by-sa-4.0 license.
๐ Citing & Authors
@misc{
hayato-tsukagoshi-2023-simple-simcse-ja,
author = {Hayato Tsukagoshi},
title = {Japanese Simple-SimCSE},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/hppRC/simple-simcse-ja}}
}