đ WikiMedical_sent_biobert
This is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space, useful for tasks like clustering and semantic search.
This model belongs to the sentence-similarity
pipeline and is tagged with sentence-transformers
, feature-extraction
, sentence-similarity
, and transformers
. It is trained on the nuvocare/WikiMedical_sentence_similarity
dataset.
WikiMedical_sent_bert is based on the dmis-lab/biobert-base-cased-v1.2 backbone and has been trained on the WikiMedical_sentence_simialrity dataset. It can predict whether two medical texts are related to the same Wikipedia page.
đ Quick Start
⨠Features
- Maps sentences & paragraphs to a 768 dimensional dense vector space.
- Can be used for clustering or semantic search.
- Able to predict whether two medical texts are related to the same wikipedia page.
đĻ Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage
If you have sentence-transformers installed:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('nuvocare/WikiMedical_sent_biobert')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model like this:
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('WikiMedical_sent_biobert')
model = AutoModel.from_pretrained('WikiMedical_sent_biobert')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
đ Documentation
Evaluation Results
The model is evaluated on the test set of WikiMedical_sentence_similarity. It achieves:
- A cosine spearman score of 0.87
- A cosine pearson score of 0.95
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 3170 with parameters:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Parameters of the fit()-Method:
{
"epochs": 2,
"evaluation_steps": 2000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 300,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
đ License
No license information provided.
Citing & Authors
Samuel Chaineau