đ WikiMedical_sent_biobert_multi
WikiMedical_sent_biobert_multi is a multilingual sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space, suitable for tasks such as clustering and semantic search.
đ Quick Start
WikiMedical_sent_biobert_multi is a multilingual variation of nuvocare/WikiMedical_sent_biobert. It maps sentences and paragraphs to a 768-dimensional dense vector space, which can be used for tasks like clustering or semantic search. It has been trained on the nuvocare/Ted2020_en_es_fr_de_it_ca_pl_ru_nl dataset.
⨠Features
- Maps sentences and paragraphs to a 768-dimensional dense vector space.
- Can be used for clustering or semantic search.
- Multilingual variation, trained to replicate embeddings across different languages.
đĻ Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('WikiMedical_sent_biobert_multi')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('WikiMedical_sent_biobert_multi')
model = AutoModel.from_pretrained('WikiMedical_sent_biobert_multi')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
đ Documentation
Evaluation Results
The model is evaluated across languages based on 2 evaluators : MSE and translation.
The following table summarized the results:
Language |
MSE (x100) |
Translation (source to target) |
Translation (target to source) |
de |
10.39 |
0.70 |
0.69 |
es |
9.9 |
0.75 |
0.74 |
fr |
10.00 |
0.72 |
0.73 |
it |
10.29 |
0.69 |
0.69 |
nl |
10.34 |
0.70 |
0.70 |
pl |
11.39 |
0.58 |
0.58 |
ru |
11.18 |
0.59 |
0.59 |
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 66833 with parameters:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.MSELoss.MSELoss
Parameters of the fit()-Method:
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 500,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
đ Citing & Authors