Model Overview
Model Features
Model Capabilities
Use Cases
🚀 BRIA 2.3 ControlNet Generative Fill Fast
BRIA 2.3 Generative Fill is trained on a large commercial - grade dataset. It ensures high - quality results and is safe for commercial use, with full legal liability coverage.
🚀 Quick Start
Trained exclusively on the largest multi - source commercial - grade licensed dataset, BRIA 2.3 Generative Fill guarantees best quality while being safe for commercial use. The model provides full legal liability coverage for copyright and privacy infringement and harmful content mitigation, as our dataset does not represent copyrighted materials, such as fictional characters, logos or trademarks, public figures, harmful content or privacy - infringing content.
BRIA 2.3 Generative Fill is a model designed to fill masked regions in images based on user - provided textual prompts. The model can be applied in different scenarios, including object replacement, addition, and modification within an image.
This model works with all types of masks, but is highly optimized to work best with blob - shaped masks which occupy more than 15% of the image area.
Get Access
BRIA 2.3 ControlNet - Generative Fill requires access to BRIA 2.3 Foundation model. For more information, click here.
- API Endpoint: [Bria.ai](https://platform.bria.ai/console/api/image - editing), [fal.ai](https://fal.ai/models/fal - ai/bria/genfill)
- ComfyUI: [Use it in workflows](https://github.com/Bria - AI/ComfyUI - BRIA - API)
For more information, please visit our website.
Join our Discord community for more information, tutorials, tools, and to connect with other users!
[CLICK HERE FOR A DEMO](https://huggingface.co/spaces/briaai/BRIA - Generative - Fill - API)
✨ Features
What's New
BRIA 2.3 ControlNet Generative Fill can be applied on top of BRIA 2.3 Text - to - Image and therefore enable to use [Fast - LORA](https://huggingface.co/briaai/BRIA - 2.3 - FAST - LORA). This results in an extremely fast generative fill model, requiring only 1.6s using A10 GPU.
Model Description
Property | Details |
---|---|
Developed by | BRIA AI |
Model Type | Latent diffusion image - to - image model |
License | [bria - 2.3 inpainting Licensing terms & conditions](https://bria.ai/bria - huggingface - model - license - agreement/). Purchase is required to license and access the model. |
Model Description | BRIA 2.3 Generative Fill was trained exclusively on a professional - grade, licensed dataset. It is designed for commercial use and includes full legal liability coverage. |
Resources for more information | BRIA AI |
💻 Usage Examples
Basic Usage
Tested with:
diffusers==0.27.2
transformers==4.47.1
torch==2.3.0 (on CUDA 12.1)
peft==0.14.0
huggingface_hub==0.25.2
from diffusers import (
AutoencoderKL,
LCMScheduler,
)
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from controlnet import ControlNetModel, ControlNetConditioningEmbedding
import torch
import numpy as np
from PIL import Image
import requests
import PIL
from io import BytesIO
from torchvision import transforms
import pandas as pd
import os
def resize_image_to_retain_ratio(image):
pixel_number = 1024*1024
granularity_val = 8
ratio = image.size[0] / image.size[1]
width = int((pixel_number * ratio) ** 0.5)
width = width - (width % granularity_val)
height = int(pixel_number / width)
height = height - (height % granularity_val)
image = image.resize((width, height))
return image
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
def get_masked_image(image, image_mask, width, height):
image_mask = image_mask # fill area is white
image_mask = image_mask.resize((width, height)) # object to remove is white (1)
image_mask_pil = image_mask
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
masked_image_to_present = image.copy()
masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) # set as masked pixel
image[image_mask > 0.5] = 0.5 # set as masked pixel - s.t. will be grey
image = Image.fromarray((image * 255.0).astype(np.uint8))
masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8))
return image, image_mask_pil, masked_image_to_present
image_transforms = transforms.Compose(
[
transforms.ToTensor(),
]
)
default_negative_prompt = "blurry"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((1024, 1024))
mask_image = download_image(mask_url).resize((1024, 1024))
init_image = resize_image_to_retain_ratio(init_image)
width, height = init_image.size
mask_image = mask_image.convert("L").resize(init_image.size)
width, height = init_image.size
# Load, init model
controlnet = ControlNetModel().from_pretrained("briaai/BRIA-2.3-ControlNet-Generative-Fill", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA")
pipe.fuse_lora()
pipe = pipe.to(device="cuda")
# pipe.enable_xformers_memory_efficient_attention()
generator = torch.Generator(device="cuda").manual_seed(123456)
vae = pipe.vae
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask_image, width, height)
masked_image_tensor = image_transforms(masked_image)
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda")
control_latents = vae.encode(
masked_image_tensor[:, :3, :, :].to(vae.dtype)
).latent_dist.sample()
control_latents = control_latents * vae.config.scaling_factor
image_mask = np.array(image_mask)[:,:]
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...]
# binarize the mask
mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0)
mask_tensor = mask_tensor / 255.0
mask_tensor = mask_tensor.to(device="cuda")
mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest')
masked_image = torch.cat([control_latents, mask_resized], dim=1)
prompt = ""
gen_img = pipe(negative_prompt=default_negative_prompt, prompt=prompt,
controlnet_conditioning_scale=1.0,
num_inference_steps=12,
height=height, width=width,
image = masked_image, # control image
init_image = init_image,
mask_image = mask_tensor,
guidance_scale = 1.2,
generator=generator).images[0]
📄 License
- License Name: bria - 2.3
- License Type: other
- License Link: [https://bria.ai/bria - huggingface - model - license - agreement/](https://bria.ai/bria - huggingface - model - license - agreement/)
To obtain the model weights from BRIA AI, you need to purchase a commercial license. Fill in the form below and we'll reach out to you.
Fill in this form to request a commercial license for the model
Field | Type |
---|---|
Name | text |
Company/Org name | text |
Org Type (Early/Growth Startup, Enterprise, Academy) | text |
Role | text |
Country | text |
text | |
By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: | checkbox |