🚀 Transformers库随机初始化模型
本项目基于transformers
库构建了一个随机初始化的模型。该模型使用了 [https://huggingface.co/google/gemma-7b-it] 的配置,但规模更小,且采用了float16数据类型。
🚀 快速开始
此模型是随机初始化的,采用了 [https://huggingface.co/google/gemma-7b-it] 的配置,但规模更小。请注意,该模型使用的是float16数据类型。
代码示例
from transformers import pipeline
from huggingface_hub import create_repo, upload_folder
import torch
import transformers
import os
model_id = 'google/gemma-7b-it'
save_path = '/tmp/yujiepan/gemma-tiny-random'
repo_id = 'yujiepan/gemma-tiny-random'
config = transformers.AutoConfig.from_pretrained(model_id)
config.hidden_size = 8
config.head_dim = 2
config.intermediate_size = 16
config.num_attention_heads = 4
config.num_hidden_layers = 2
config.num_key_value_heads = 2
print(config)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.save_pretrained(save_path)
model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=torch.float16)
model = model.half()
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, do_sample=False, device='cuda')
print(pipe('Hello World!'))
model.save_pretrained(save_path)
os.system(f'ls -alh {save_path}')
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path)
📦 安装指南
原文档未提及安装步骤,若要使用此代码,你需要安装以下库:
transformers
huggingface_hub
torch
你可以使用以下命令进行安装:
pip install transformers huggingface_hub torch
💻 使用示例
基础用法
from transformers import pipeline
from huggingface_hub import create_repo, upload_folder
import torch
import transformers
import os
model_id = 'google/gemma-7b-it'
save_path = '/tmp/yujiepan/gemma-tiny-random'
repo_id = 'yujiepan/gemma-tiny-random'
config = transformers.AutoConfig.from_pretrained(model_id)
config.hidden_size = 8
config.head_dim = 2
config.intermediate_size = 16
config.num_attention_heads = 4
config.num_hidden_layers = 2
config.num_key_value_heads = 2
print(config)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.save_pretrained(save_path)
model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=torch.float16)
model = model.half()
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, do_sample=False, device='cuda')
print(pipe('Hello World!'))
model.save_pretrained(save_path)
os.system(f'ls -alh {save_path}')
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path)
高级用法
原文档未提及高级用法相关内容。
🔧 技术细节
该模型随机初始化,使用了 [https://huggingface.co/google/gemma-7b-it] 的配置,但对配置参数进行了调整,如hidden_size
、head_dim
等,以减小模型规模。同时,模型采用了float16数据类型,以降低内存占用。代码中使用了transformers
库的pipeline
进行文本生成任务,并将模型保存到指定路径,最后上传到Hugging Face Hub。