Span Marker Xlm Roberta Base Fewnerd Fine Super
模型简介
该模型采用SpanMarker架构,专门用于命名实体识别(NER)任务,支持英语和多语言文本处理。
模型特点
多语言支持
基于xlm-roberta-base编码器,支持英语和多语言文本处理
细粒度实体识别
能够识别66种不同类型的实体,包括艺术、建筑、事件、地点、组织等
SpanMarker架构
采用SpanMarker架构,专门优化用于命名实体识别任务
模型能力
命名实体识别
多语言文本处理
细粒度实体分类
使用案例
信息提取
新闻文章实体识别
从新闻文章中提取人名、地名、组织名等实体
F1分数0.6885
学术文献分析
识别科研论文中的化学物质、生物学术语等专业实体
化学物质F1分数0.5832,生物学术语F1分数0.6497
商业智能
公司名称识别
从商业文档中提取公司名称和组织信息
F1分数0.6917
产品识别
识别文本中提到的产品名称和类型
汽车产品F1分数0.7234,飞机产品F1分数0.6464
🚀 在FewNERD数据集上使用xlm - roberta - base的SpanMarker模型
这是一个在[FewNERD](https://huggingface.co/datasets/DFKI - SLT/few - nerd)数据集上训练的SpanMarker模型,可用于命名实体识别。该SpanMarker模型使用[xlm - roberta - base](https://huggingface.co/xlm - roberta - base)作为基础编码器。
✨ 主要特性
- 适用于命名实体识别任务。
- 支持英语和多语言。
- 基于强大的xlm - roberta - base编码器。
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | SpanMarker |
编码器 | [xlm - roberta - base](https://huggingface.co/xlm - roberta - base) |
最大序列长度 | 256个标记 |
最大实体长度 | 8个单词 |
训练数据 | [FewNERD](https://huggingface.co/datasets/DFKI - SLT/few - nerd) |
支持语言 | 英语、多语言 |
许可证 | cc - by - sa - 4.0 |
模型来源
模型标签
标签 | 示例 |
---|---|
art - broadcastprogram | "The Gale Storm Show : Oh , Susanna"、"Corazones"、"Street Cents" |
art - film | "L'Atlantide"、"Shawshank Redemption"、"Bosch" |
art - music | "Hollywood Studio Symphony"、"Atkinson , Danko and Ford ( with Brockie and Hilton )"、"Champion Lover" |
art - other | "Venus de Milo"、"Aphrodite of Milos"、"The Today Show" |
art - painting | "Cofiwch Dryweryn"、"Production/Reproduction"、"Touit" |
art - writtenart | "The Seven Year Itch"、"Time"、"Imelda de ' Lambertazzi" |
building - airport | "Newark Liberty International Airport"、"Luton Airport"、"Sheremetyevo International Airport" |
building - hospital | "Hokkaido University Hospital"、"Yeungnam University Hospital"、"Memorial Sloan - Kettering Cancer Center" |
building - hotel | "Radisson Blu Sea Plaza Hotel"、"The Standard Hotel"、"Flamingo Hotel" |
building - library | "British Library"、"Berlin State Library"、"Bayerische Staatsbibliothek" |
building - other | "Communiplex"、"Henry Ford Museum"、"Alpha Recording Studios" |
building - restaurant | "Fatburger"、"Carnegie Deli"、"Trumbull" |
building - sportsfacility | "Boston Garden"、"Glenn Warner Soccer Facility"、"Sports Center" |
building - theater | "Pittsburgh Civic Light Opera"、"National Paris Opera"、"Sanders Theatre" |
event - attack/battle/war/militaryconflict | "Jurist"、"Easter Offensive"、"Vietnam War" |
event - disaster | "1693 Sicily earthquake"、"1990s North Korean famine"、"the 1912 North Mount Lyell Disaster" |
event - election | "March 1898 elections"、"Elections to the European Parliament"、"1982 Mitcham and Morden by - election" |
event - other | "Eastwood Scoring Stage"、"Union for a Popular Movement"、"Masaryk Democratic Movement" |
event - protest | "Russian Revolution"、"French Revolution"、"Iranian Constitutional Revolution" |
event - sportsevent | "World Cup"、"Stanley Cup"、"National Champions" |
location - GPE | "Mediterranean Basin"、"Croatian"、"the Republic of Croatia" |
location - bodiesofwater | "Norfolk coast"、"Atatürk Dam Lake"、"Arthur Kill" |
location - island | "Laccadives"、"Staten Island"、"new Samsat district" |
location - mountain | "Ruweisat Ridge"、"Miteirya Ridge"、"Salamander Glacier" |
location - other | "Victoria line"、"Northern City Line"、"Cartuther" |
location - park | "Painted Desert Community Complex Historic District"、"Shenandoah National Park"、"Gramercy Park" |
location - road/railway/highway/transit | "Newark - Elizabeth Rail Link"、"NJT"、"Friern Barnet Road" |
organization - company | "Church 's Chicken"、"Texas Chicken"、"Dixy Chicken" |
organization - education | "MIT"、"Belfast Royal Academy and the Ulster College of Physical Education"、"Barnard College" |
organization - government/governmentagency | "Congregazione dei Nobili"、"Diet"、"Supreme Court" |
organization - media/newspaper | "TimeOut Melbourne"、"Al Jazeera"、"Clash" |
organization - other | "IAEA"、"4th Army"、"Defence Sector C" |
organization - politicalparty | "Al Wafa ' Islamic"、"Shimpot≈ç"、"Kenseit≈ç" |
organization - religion | "UPCUSA"、"Jewish"、"Christian" |
organization - showorganization | "Bochumer Symphoniker"、"Mr. Mister"、"Lizzy" |
organization - sportsleague | "First Division"、"NHL"、"China League One" |
organization - sportsteam | "Tottenham"、"Arsenal"、"Luc Alphand Aventures" |
other - astronomything | "Algol"、"Zodiac"、"`` Caput Larvae ''" |
other - award | "Grand Commander of the Order of the Niger"、"Order of the Republic of Guinea and Nigeria"、"GCON" |
other - biologything | "Amphiphysin"、"BAR"、"N - terminal lipid" |
other - chemicalthing | "carbon dioxide"、"sulfur"、"uranium" |
other - currency | "$"、"lac crore"、"Travancore Rupee" |
other - disease | "hypothyroidism"、"bladder cancer"、"French Dysentery Epidemic of 1779" |
other - educationaldegree | "Master"、"Bachelor"、"BSc ( Hons ) in physics" |
other - god | "El"、"Fujin"、"Raijin" |
other - language | "Breton - speaking"、"Latin"、"English" |
other - law | "United States Freedom Support Act"、"Thirty Years ' Peace"、"Leahy‚ÄìSmith America Invents Act ( AIA" |
other - livingthing | "insects"、"patchouli"、"monkeys" |
other - medical | "amitriptyline"、"pediatrician"、"Pediatrics" |
person - actor | "Tch√©ky Karyo"、"Edmund Payne"、"Ellaline Terriss" |
person - artist/author | "George Axelrod"、"Hicks"、"Gaetano Donizett" |
person - athlete | "Jaguar"、"Neville"、"Tozawa" |
person - director | "Richard Quine"、"Frank Darabont"、"Bob Swaim" |
person - other | "Campbell"、"Richard Benson"、"Holden" |
person - politician | "Rivi√®re"、"Emeric"、"William" |
person - scholar | "Stedman"、"Wurdack"、"Stalmine" |
person - soldier | "Joachim Ziegler"、"Krukenberg"、"Helmuth Weidling" |
product - airplane | "EC135T2 CPDS"、"Spey - equipped FGR.2s"、"Luton" |
product - car | "Phantom"、"Corvettes - GT1 C6R"、"100EX" |
product - food | "V. labrusca"、"red grape"、"yakiniku" |
product - game | "Hardcore RPG"、"Airforce Delta"、"Splinter Cell" |
product - other | "PDP - 1"、"Fairbottom Bobs"、"X11" |
product - ship | "Essex"、"Congress"、"HMS `` Chinkara ''" |
product - software | "Wikipedia"、"Apdf"、"AmiPDF" |
product - train | "55022"、"Royal Scots Grey"、"High Speed Trains" |
product - weapon | "AR - 15 's"、"ZU - 23 - 2MR Wr√≥bel II"、"ZU - 23 - 2M Wr√≥bel" |
评估
指标
标签 | 精确率 | 召回率 | F1值 |
---|---|---|---|
全部 | 0.6890 | 0.6879 | 0.6885 |
art - broadcastprogram | 0.6 | 0.5771 | 0.5883 |
art - film | 0.7384 | 0.7453 | 0.7419 |
art - music | 0.7930 | 0.7221 | 0.7558 |
art - other | 0.4245 | 0.2900 | 0.3446 |
art - painting | 0.5476 | 0.4035 | 0.4646 |
art - writtenart | 0.6400 | 0.6539 | 0.6469 |
building - airport | 0.8219 | 0.8242 | 0.8230 |
building - hospital | 0.7024 | 0.8104 | 0.7526 |
building - hotel | 0.7175 | 0.7283 | 0.7228 |
building - library | 0.74 | 0.7296 | 0.7348 |
building - other | 0.5828 | 0.5910 | 0.5869 |
building - restaurant | 0.5525 | 0.5216 | 0.5366 |
building - sportsfacility | 0.6187 | 0.7881 | 0.6932 |
building - theater | 0.7067 | 0.7626 | 0.7336 |
event - attack/battle/war/militaryconflict | 0.7544 | 0.7468 | 0.7506 |
event - disaster | 0.5882 | 0.5314 | 0.5584 |
event - election | 0.4167 | 0.2198 | 0.2878 |
event - other | 0.4902 | 0.4042 | 0.4430 |
event - protest | 0.3643 | 0.2831 | 0.3186 |
event - sportsevent | 0.6125 | 0.6239 | 0.6182 |
location - GPE | 0.8102 | 0.8553 | 0.8321 |
location - bodiesofwater | 0.6888 | 0.7725 | 0.7282 |
location - island | 0.7285 | 0.6440 | 0.6836 |
location - mountain | 0.7129 | 0.7327 | 0.7227 |
location - other | 0.4376 | 0.2560 | 0.3231 |
location - park | 0.6991 | 0.6900 | 0.6945 |
location - road/railway/highway/transit | 0.6936 | 0.7259 | 0.7094 |
organization - company | 0.6921 | 0.6912 | 0.6917 |
organization - education | 0.7838 | 0.7963 | 0.7900 |
organization - government/governmentagency | 0.5363 | 0.4394 | 0.4831 |
organization - media/newspaper | 0.6215 | 0.6705 | 0.6451 |
organization - other | 0.5766 | 0.5157 | 0.5444 |
organization - politicalparty | 0.6449 | 0.7324 | 0.6859 |
organization - religion | 0.5139 | 0.6057 | 0.5560 |
organization - showorganization | 0.5620 | 0.5657 | 0.5638 |
organization - sportsleague | 0.6348 | 0.6542 | 0.6443 |
organization - sportsteam | 0.7138 | 0.7566 | 0.7346 |
other - astronomything | 0.7418 | 0.7625 | 0.752 |
other - award | 0.7291 | 0.6736 | 0.7002 |
other - biologything | 0.6735 | 0.6275 | 0.6497 |
other - chemicalthing | 0.6025 | 0.5651 | 0.5832 |
other - currency | 0.6843 | 0.8411 | 0.7546 |
other - disease | 0.6284 | 0.7089 | 0.6662 |
other - educationaldegree | 0.5856 | 0.6033 | 0.5943 |
other - god | 0.6089 | 0.6913 | 0.6475 |
other - language | 0.6608 | 0.7968 | 0.7225 |
other - law | 0.6693 | 0.7246 | 0.6958 |
other - livingthing | 0.6070 | 0.6014 | 0.6042 |
other - medical | 0.5062 | 0.5113 | 0.5088 |
person - actor | 0.8274 | 0.7673 | 0.7962 |
person - artist/author | 0.6761 | 0.7294 | 0.7018 |
person - athlete | 0.8132 | 0.8347 | 0.8238 |
person - director | 0.675 | 0.6823 | 0.6786 |
person - other | 0.6472 | 0.6388 | 0.6429 |
person - politician | 0.6621 | 0.6593 | 0.6607 |
person - scholar | 0.5181 | 0.5007 | 0.5092 |
person - soldier | 0.4750 | 0.5131 | 0.4933 |
product - airplane | 0.6230 | 0.6717 | 0.6464 |
product - car | 0.7293 | 0.7176 | 0.7234 |
Indonesian Roberta Base Posp Tagger
MIT
这是一个基于印尼语RoBERTa模型微调的词性标注模型,在indonlu数据集上训练,用于印尼语文本的词性标注任务。
序列标注
Transformers 其他

I
w11wo
2.2M
7
Bert Base NER
MIT
基于BERT微调的命名实体识别模型,可识别四类实体:地点(LOC)、组织机构(ORG)、人名(PER)和杂项(MISC)
序列标注 英语
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
该模型是基于RoBERTa微调的序列标注模型,用于识别和移除医疗记录中的受保护健康信息(PHI/PII)。
序列标注
Transformers 支持多种语言

D
obi
1.1M
33
Ner English Fast
Flair自带的英文快速4类命名实体识别模型,基于Flair嵌入和LSTM-CRF架构,在CoNLL-03数据集上达到92.92的F1分数。
序列标注
PyTorch 英语
N
flair
978.01k
24
French Camembert Postag Model
基于Camembert-base的法语词性标注模型,使用free-french-treebank数据集训练
序列标注
Transformers 法语

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
基于XLM-Roberta-large架构微调的西班牙语命名实体识别模型,在CoNLL-2002数据集上表现优异。
序列标注
Transformers 西班牙语

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
基于NusaBert-v1.3在印尼语NER任务上微调的命名实体识别模型
序列标注
Transformers 其他

N
cahya
759.09k
3
Ner English Large
Flair框架内置的英文4类大型NER模型,基于文档级XLM-R嵌入和FLERT技术,在CoNLL-03数据集上F1分数达94.36。
序列标注
PyTorch 英语
N
flair
749.04k
44
Punctuate All
MIT
基于xlm-roberta-base微调的多语言标点符号预测模型,支持12种欧洲语言的标点符号自动补全
序列标注
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
基于xlm-roberta-base微调的日语命名实体识别模型
序列标注
Transformers 支持多种语言

X
tsmatz
630.71k
25
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98