🚀 ReasonFlux:通过扩展思维模板实现分层大语言模型推理
ReasonFlux是一种革命性的模板增强推理范式,它使一个32B的模型在推理任务中超越了o1 - mini和DeepSeek - R1蒸馏模型。
任务/Pass@1 |
ReasonFlux - F1 - 32B |
ReasonFlux - Zero - 32B |
R1 - Distill - 32B |
o1 - mini |
LIMO - 32B |
s1 - 32B |
MATH500 |
96.0 |
91.2 |
94.3 |
90.0 |
90.6 |
93.0 |
AIME 2024 |
76.7 |
56.7 |
72.6 |
56.7 |
50.0 |
56.7 |
AIME 2025 |
53.3 |
37.2 |
46.67 |
50.8 |
37.2 |
49.3 |
GPQA - Diamond |
67.2 |
61.2 |
62.1 |
60.0 |
65.2 |
59.6 |
🚀 快速开始
使用VLLM快速开始
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = 'Gen-Verse/ReasonFlux-F1-7B'
model = LLM(
model_id,
tensor_parallel_size=8,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
sampling_params = SamplingParams(
max_tokens=32768,
)
question = """Let \(x, y\), and \(z\) be positive real numbers satisfying the system of equations:
\[
\begin{array}{c}
\sqrt{2 x-x y}+\sqrt{2 y-x y}=1 \\
\sqrt{2 y-y z}+\sqrt{2 z-y z}=\sqrt{2} \\
\sqrt{2 z-z x}+\sqrt{2 x-z x}=\sqrt{3} .
\end{array}
\]
Then \(\left[(1-x)(1-y)(1-z)\right]^{2}\) can be written as \(\frac{m}{n}\), where \(m\) and \(n\) are relatively prime positive integers. Find \(m+n\)."""
ds_prompt="<|User|>\n" + question + "<|Assistant|>\n"
output = model.generate(ds_prompt, sampling_params=sampling_params)
print(output[0].outputs[0].text)
✨ 主要特性
ReasonFlux - F1 - 7B是我们通过利用来自ReasonFlux - Zero的模板增强推理轨迹进行微调的SOTA级推理大语言模型。
📚 详细文档
评估结果
我们展示了ReasonFlux - F1 - 32B在包括AIME2024、AIM2025、MATH500和GPQA - Diamond等具有挑战性的推理任务上的评估结果。为了进行公平比较,我们报告了这些大语言模型在[ReasonFlux - F1](https://github.com/Gen - Verse/ReasonFlux)评估脚本上的结果。
模型 |
AIME2024@pass1 |
AIME2025@pass1 |
MATH500@pass1 |
GPQA@pass1 |
QwQ - 32B - Preview |
46.7 |
37.2 |
90.6 |
65.2 |
LIMO - 32B |
56.3 |
44.5 |
94.8 |
58.1 |
s1 - 32B |
56.7 |
49.3 |
93.0 |
59.6 |
OpenThinker - 32B |
66.0 |
53.3 |
94.8 |
60.1 |
R1 - Distill - 32B |
70.0 |
46.7 |
92.0 |
59.6 |
ReasonFlux - Zero - 32B |
56.7 |
37.2 |
91.2 |
61.2 |
ReasonFlux - F1 - 32B |
76.7 |
53.3 |
96.0 |
67.2 |
📄 许可证
许可证类型:other
📦 模型信息
属性 |
详情 |
库名称 |
transformers |
基础模型 |
deepseek - ai/DeepSeek - R1 - Distill - Qwen - 7B |
标签 |
llama - factory、full、generated_from_trainer |
模型名称 |
ReasonFlux - F1 - 7B |
📖 引用信息
@article{yang2025reasonflux,
title={ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates},
author={Yang, Ling and Yu, Zhaochen and Cui, Bin and Wang, Mengdi},
journal={arXiv preprint arXiv:2502.06772},
year={2025}
}