模型简介
模型特点
模型能力
使用案例
🚀 mlabonne的Qwen3-0.6B-abliterated的Llamacpp imatrix量化版本
本项目是对mlabonne的Qwen3-0.6B-abliterated模型进行量化处理的成果。使用特定工具和方法将原模型转换为不同量化类型的版本,以满足不同硬件和性能需求。这些量化版本可以在多种环境中运行,为用户提供了更多的选择。
🚀 快速开始
原模型地址:https://huggingface.co/mlabonne/Qwen3-0.6B-abliterated
所有量化版本均使用imatrix选项,并采用 此处 的数据集生成。
你可以在 LM Studio 中运行这些量化版本,也可以直接使用 llama.cpp 或任何基于llama.cpp的项目来运行。
✨ 主要特性
- 多种量化类型:提供了丰富的量化类型选择,如bf16、Q8_0、Q6_K_L等,以满足不同的性能和质量需求。
- 特定权重处理:部分量化版本(如Q3_K_XL、Q4_K_L等)采用了特殊的嵌入和输出权重量化方法,将其量化为Q8_0,以提高性能。
- 在线重打包:对于Q4_0量化版本,支持在线重打包功能,可自动优化ARM和AVX机器的性能。
📦 安装指南
使用huggingface-cli下载
点击查看下载说明
首先,确保你已安装huggingface-cli:
pip install -U "huggingface_hub[cli]"
然后,你可以指定要下载的特定文件:
huggingface-cli download bartowski/mlabonne_Qwen3-0.6B-abliterated-GGUF --include "mlabonne_Qwen3-0.6B-abliterated-Q4_K_M.gguf" --local-dir ./
如果模型大小超过50GB,它会被分割成多个文件。若要将它们全部下载到本地文件夹,请运行:
huggingface-cli download bartowski/mlabonne_Qwen3-0.6B-abliterated-GGUF --include "mlabonne_Qwen3-0.6B-abliterated-Q8_0/*" --local-dir ./
你可以指定一个新的本地目录(如mlabonne_Qwen3-0.6B-abliterated-Q8_0),也可以将它们全部下载到当前目录(./)。
💻 使用示例
提示格式
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
📚 详细文档
下载文件选择
文件名 | 量化类型 | 文件大小 | 分割情况 | 描述 |
---|---|---|---|---|
Qwen3-0.6B-abliterated-bf16.gguf | bf16 | 1.20GB | false | 完整的BF16权重。 |
Qwen3-0.6B-abliterated-Q8_0.gguf | Q8_0 | 0.64GB | false | 极高质量,通常不需要,但提供了最大可用量化。 |
Qwen3-0.6B-abliterated-Q6_K_L.gguf | Q6_K_L | 0.53GB | false | 嵌入和输出权重使用Q8_0。非常高质量,接近完美,推荐。 |
Qwen3-0.6B-abliterated-Q6_K.gguf | Q6_K | 0.50GB | false | 非常高质量,接近完美,推荐。 |
Qwen3-0.6B-abliterated-Q5_K_L.gguf | Q5_K_L | 0.48GB | false | 嵌入和输出权重使用Q8_0。高质量,推荐。 |
Qwen3-0.6B-abliterated-Q5_K_M.gguf | Q5_K_M | 0.44GB | false | 高质量,推荐。 |
Qwen3-0.6B-abliterated-Q5_K_S.gguf | Q5_K_S | 0.44GB | false | 高质量,推荐。 |
Qwen3-0.6B-abliterated-Q4_K_L.gguf | Q4_K_L | 0.43GB | false | 嵌入和输出权重使用Q8_0。质量良好,推荐。 |
Qwen3-0.6B-abliterated-Q4_1.gguf | Q4_1 | 0.41GB | false | 旧格式,性能与Q4_K_S相似,但在Apple硅芯片上的每瓦令牌数有所提高。 |
Qwen3-0.6B-abliterated-Q3_K_XL.gguf | Q3_K_XL | 0.41GB | false | 嵌入和输出权重使用Q8_0。质量较低但可用,适合低内存情况。 |
Qwen3-0.6B-abliterated-Q4_K_M.gguf | Q4_K_M | 0.40GB | false | 质量良好,是大多数用例的默认大小,推荐。 |
Qwen3-0.6B-abliterated-Q4_K_S.gguf | Q4_K_S | 0.38GB | false | 质量略低但节省空间,推荐。 |
Qwen3-0.6B-abliterated-Q4_0.gguf | Q4_0 | 0.38GB | false | 旧格式,支持为ARM和AVX CPU推理进行在线重新打包。 |
Qwen3-0.6B-abliterated-IQ4_NL.gguf | IQ4_NL | 0.38GB | false | 类似于IQ4_XS,但略大。支持为ARM CPU推理进行在线重新打包。 |
Qwen3-0.6B-abliterated-IQ4_XS.gguf | IQ4_XS | 0.37GB | false | 质量不错,比Q4_K_S小且性能相似,推荐。 |
Qwen3-0.6B-abliterated-Q3_K_L.gguf | Q3_K_L | 0.37GB | false | 质量较低但可用,适合低内存情况。 |
Qwen3-0.6B-abliterated-Q3_K_M.gguf | Q3_K_M | 0.35GB | false | 质量较低。 |
Qwen3-0.6B-abliterated-IQ3_M.gguf | IQ3_M | 0.34GB | false | 中低质量,新方法,性能与Q3_K_M相当。 |
Qwen3-0.6B-abliterated-Q2_K_L.gguf | Q2_K_L | 0.33GB | false | 嵌入和输出权重使用Q8_0。质量非常低但出人意料地可用。 |
Qwen3-0.6B-abliterated-Q3_K_S.gguf | Q3_K_S | 0.32GB | false | 质量较低,不推荐。 |
Qwen3-0.6B-abliterated-IQ3_XS.gguf | IQ3_XS | 0.31GB | false | 质量较低,新方法,性能不错,略优于Q3_K_S。 |
Qwen3-0.6B-abliterated-Q2_K.gguf | Q2_K | 0.30GB | false | 质量非常低但出人意料地可用。 |
Qwen3-0.6B-abliterated-IQ3_XXS.gguf | IQ3_XXS | 0.28GB | false | 质量较低,新方法,性能不错,与Q3量化相当。 |
Qwen3-0.6B-abliterated-IQ2_M.gguf | IQ2_M | 0.26GB | false | 质量相对较低,使用了最先进的技术,出人意料地可用。 |
嵌入/输出权重
部分量化版本(如Q3_K_XL、Q4_K_L等)采用了标准量化方法,将嵌入和输出权重量化为Q8_0,而非通常的默认值。
ARM/AVX信息
以前,你会下载Q4_0_4_4/4_8/8_8版本,这些版本的权重会在内存中交错排列,以便通过一次加载更多数据来提高ARM和AVX机器的性能。
然而,现在有了一种称为“在线重新打包”的权重处理方式,详情见 此PR。如果你使用Q4_0并且你的硬件能从重新打包权重中受益,它会自动实时进行处理。
从llama.cpp构建版本 b4282 开始,你将无法运行Q4_0_X_X文件,而需要使用Q4_0。
此外,如果你想获得更好的质量,可以使用IQ4_NL,这得益于 此PR,它也会为ARM重新打包权重,不过目前仅支持4_4。加载时间可能会更长,但总体速度会提高。
点击查看Q4_0_X_X信息(已弃用)
我保留这部分内容是为了展示使用支持在线重新打包的Q4_0在性能上的潜在理论提升。
点击查看AVX2系统(EPYC7702)上的基准测试
模型 | 大小 | 参数 | 后端 | 线程数 | 测试用例 | 每秒令牌数 | 与Q4_0相比的百分比 |
---|---|---|---|---|---|---|---|
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% |
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% |
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% |
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% |
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% |
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% |
Q4_0_8_8在提示处理方面有显著提升,在文本生成方面有小幅提升。
如何选择文件
点击查看详情
Artefact2 提供了一篇很棒的文章,带有展示各种性能的图表,可查看 此处。
首先,你需要确定能运行多大的模型。为此,你需要了解自己有多少内存(RAM)和/或显存(VRAM)。
如果你希望模型运行得尽可能快,你需要将整个模型放入GPU的显存中。选择文件大小比GPU总显存小1 - 2GB的量化版本。
如果你追求绝对最高质量,将系统内存和GPU显存相加,然后选择文件大小比该总和小1 - 2GB的量化版本。
接下来,你需要决定是使用“I - 量化”还是“K - 量化”。
如果你不想考虑太多,可以选择K - 量化版本。这些版本的格式为“QX_K_X”,如Q5_K_M。
如果你想深入了解,可以查看这个非常有用的特性图表:llama.cpp特性矩阵
但基本上,如果你目标是低于Q4的量化版本,并且你使用的是cuBLAS(Nvidia)或rocBLAS(AMD),你应该考虑I - 量化版本。这些版本的格式为IQX_X,如IQ3_M。这些是较新的版本,在相同大小下提供更好的性能。
这些I - 量化版本也可以在CPU上使用,但比相应的K - 量化版本慢,所以你需要在速度和性能之间做出权衡。
🔧 技术细节
部分量化版本(如Q3_K_XL、Q4_K_L等)采用了特殊的嵌入和输出权重量化方法,将其量化为Q8_0,以提高性能。同时,对于Q4_0量化版本,支持在线重打包功能,可自动优化ARM和AVX机器的性能。
📄 许可证
文档中未提及相关许可证信息。
致谢
感谢kalomaze和Dampf在创建imatrix校准数据集方面提供的帮助。
感谢ZeroWw在嵌入/输出实验方面提供的灵感。
感谢LM Studio对本项目的赞助。
如果你想支持我的工作,请访问我的ko - fi页面:https://ko-fi.com/bartowski



