模型简介
模型特点
模型能力
使用案例
🚀 NVIDIA OpenCodeReasoning-Nemotron-32B-IOI的Llamacpp imatrix量化版本
本项目是对NVIDIA的OpenCodeReasoning-Nemotron-32B-IOI模型进行的量化处理,使用了llamacpp工具,旨在为不同硬件条件的用户提供更灵活的模型使用方案。
基本信息
属性 | 详情 |
---|---|
量化者 | bartowski |
任务类型 | 文本生成 |
语言 | 英文 |
许可证 | Apache-2.0 |
基础模型关系 | 量化版本 |
基础模型 | nvidia/OpenCodeReasoning-Nemotron-32B-IOI |
标签 | nvidia, code |
数据集 | nvidia/OpenCodeReasoning |
🚀 快速开始
本项目使用 llama.cpp 的 b5306 版本进行量化。原始模型可在 这里 查看。
所有量化模型均使用 imatrix 选项和来自 此处 的数据集生成。你可以在 LM Studio 中运行这些模型,也可以直接使用 llama.cpp 或任何基于 llama.cpp 的项目来运行。
✨ 主要特性
- 多种量化类型:提供了丰富的量化类型供用户选择,以满足不同的硬件和性能需求。
- 在线重打包:部分量化模型支持在线重打包,可在运行时自动优化性能。
- 详细文档:提供了详细的下载和使用说明,方便用户操作。
📦 安装指南
使用huggingface-cli下载
首先,确保你已经安装了huggingface-cli:
pip install -U "huggingface_hub[cli]"
然后,你可以指定要下载的具体文件:
huggingface-cli download bartowski/nvidia_OpenCodeReasoning-Nemotron-32B-IOI-GGUF --include "nvidia_OpenCodeReasoning-Nemotron-32B-IOI-Q4_K_M.gguf" --local-dir ./
如果模型大小超过50GB,它会被分割成多个文件。要将它们全部下载到本地文件夹,请运行:
huggingface-cli download bartowski/nvidia_OpenCodeReasoning-Nemotron-32B-IOI-GGUF --include "nvidia_OpenCodeReasoning-Nemotron-32B-IOI-Q8_0/*" --local-dir ./
你可以指定一个新的本地目录,也可以将它们全部下载到当前目录。
💻 使用示例
提示格式
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
📚 详细文档
下载文件列表
嵌入/输出权重
部分量化模型(如Q3_K_XL、Q4_K_L等)采用标准量化方法,将嵌入和输出权重量化为Q8_0,而非默认值。
ARM/AVX信息
以前,你会下载Q4_0_4_4/4_8/8_8,这些模型的权重会在内存中交错排列,以便通过一次加载更多数据来提高ARM和AVX机器的性能。
然而,现在有了一种称为“在线重打包”的权重处理方式,详情见 此PR。如果你使用Q4_0,并且你的硬件可以从权重重打包中受益,它将在运行时自动进行。
从llama.cpp构建 b4282 开始,你将无法运行Q4_0_X_X文件,而需要使用Q4_0。
此外,如果你想获得稍好的质量,可以使用IQ4_NL,感谢 此PR,它也会为ARM重打包权重,不过目前仅支持4_4。加载时间可能会更长,但总体速度会提高。
如何选择文件
点击查看详情
Artefact2 提供了一篇很棒的文章,带有展示各种性能的图表,可 点击此处查看。
首先,你需要确定你能运行多大的模型。为此,你需要了解你有多少RAM和/或VRAM。
如果你希望模型运行得尽可能快,你需要将整个模型放入GPU的VRAM中。选择文件大小比GPU总VRAM小1 - 2GB的量化模型。
如果你追求绝对最高质量,将系统RAM和GPU的VRAM相加,然后选择文件大小比该总和小1 - 2GB的量化模型。
接下来,你需要决定是使用“I-quant”还是“K-quant”。
如果你不想考虑太多,选择一个K-quant。这些模型的格式为“QX_K_X”,如Q5_K_M。
如果你想深入了解,可以查看这个非常有用的特性图表:
但基本上,如果你目标是低于Q4的量化,并且你使用的是cuBLAS(Nvidia)或rocBLAS(AMD),你应该考虑I-quants。这些模型的格式为IQX_X,如IQ3_M。它们是较新的模型,在相同大小下提供更好的性能。
这些I-quants也可以在CPU上使用,但比相应的K-quant慢,所以你需要在速度和性能之间做出权衡。
🔧 技术细节
Q4_0_X_X信息(已弃用)
保留此部分是为了展示使用带有在线重打包的Q4_0在理论上的性能提升。
点击查看AVX2系统(EPYC7702)上的基准测试
模型 | 大小 | 参数 | 后端 | 线程数 | 测试类型 | 每秒令牌数 | 与Q4_0相比的百分比 |
---|---|---|---|---|---|---|---|
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% |
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% |
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% |
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% |
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% |
qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% |
qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% |
qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% |
Q4_0_8_8在提示处理方面有不错的提升,在文本生成方面有小幅提升。
📄 许可证
本项目使用Apache-2.0许可证。
致谢
感谢kalomaze和Dampf在创建imatrix校准数据集方面提供的帮助。
感谢ZeroWw在嵌入/输出实验方面的启发。
感谢LM Studio对我工作的赞助。
如果你想支持我的工作,请访问我的ko-fi页面:https://ko-fi.com/bartowski



