🚀 segformer-b0-finetuned-morphpadver1-hgo-coord-v1
本模型是基于计算机视觉和图像分割领域的模型,它在特定数据集上对基础模型进行微调,在评估集上取得了优异的成绩,可用于相关图像分割任务。
🚀 快速开始
本模型是 nvidia/mit-b1 在 NICOPOI - 9/morphpad_coord_hgo_512_4class 数据集上的微调版本。它在评估集上取得了以下结果:
- 损失值:0.0644
- 平均交并比(Mean Iou):0.9579
- 平均准确率:0.9785
- 总体准确率:0.9785
- 准确率 0 - 0:0.9792
- 准确率 0 - 90:0.9782
- 准确率 90 - 0:0.9762
- 准确率 90 - 90:0.9804
- 交并比 0 - 0:0.9634
- 交并比 0 - 90:0.9512
- 交并比 90 - 0:0.9543
- 交并比 90 - 90:0.9627
🔧 技术细节
训练超参数
训练过程中使用了以下超参数:
- 学习率:6e - 05
- 训练批次大小:1
- 评估批次大小:1
- 随机种子:42
- 优化器:使用 OptimizerNames.ADAMW_TORCH,β值为(0.9, 0.999),ε值为 1e - 08,无额外优化器参数
- 学习率调度器类型:线性
- 训练轮数:40
训练结果
训练损失 |
轮数 |
步数 |
验证损失 |
平均交并比 |
平均准确率 |
总体准确率 |
准确率 0 - 0 |
准确率 0 - 90 |
准确率 90 - 0 |
准确率 90 - 90 |
交并比 0 - 0 |
交并比 0 - 90 |
交并比 90 - 0 |
交并比 90 - 90 |
1.1962 |
2.5445 |
4000 |
1.2063 |
0.2464 |
0.3994 |
0.4010 |
0.2991 |
0.2803 |
0.5096 |
0.5084 |
0.2367 |
0.2111 |
0.2658 |
0.2721 |
1.051 |
5.0891 |
8000 |
1.0734 |
0.3118 |
0.4765 |
0.4765 |
0.3856 |
0.5520 |
0.3937 |
0.5745 |
0.3123 |
0.3148 |
0.2968 |
0.3233 |
0.9309 |
7.6336 |
12000 |
0.9672 |
0.3612 |
0.5314 |
0.5323 |
0.4806 |
0.5216 |
0.7075 |
0.4158 |
0.3362 |
0.3706 |
0.3778 |
0.3603 |
0.8041 |
10.1781 |
16000 |
0.8444 |
0.4475 |
0.6180 |
0.6178 |
0.6131 |
0.6672 |
0.6120 |
0.5798 |
0.4403 |
0.4360 |
0.4543 |
0.4593 |
0.6617 |
12.7226 |
20000 |
0.7405 |
0.5039 |
0.6697 |
0.6700 |
0.6310 |
0.6588 |
0.6714 |
0.7177 |
0.5097 |
0.4912 |
0.5114 |
0.5033 |
0.54 |
15.2672 |
24000 |
0.6090 |
0.5828 |
0.7360 |
0.7362 |
0.6931 |
0.7532 |
0.7427 |
0.7550 |
0.5911 |
0.5709 |
0.5876 |
0.5819 |
0.7378 |
17.8117 |
28000 |
0.3740 |
0.7401 |
0.8507 |
0.8505 |
0.8789 |
0.8270 |
0.8186 |
0.8783 |
0.7712 |
0.7324 |
0.7203 |
0.7366 |
0.58 |
20.3562 |
32000 |
0.1892 |
0.8644 |
0.9272 |
0.9272 |
0.9329 |
0.9188 |
0.9142 |
0.9430 |
0.8810 |
0.8523 |
0.8539 |
0.8704 |
0.1305 |
22.9008 |
36000 |
0.1473 |
0.8945 |
0.9443 |
0.9443 |
0.9563 |
0.9245 |
0.9421 |
0.9542 |
0.9021 |
0.8783 |
0.8925 |
0.9049 |
0.1775 |
25.4453 |
40000 |
0.1133 |
0.9178 |
0.9571 |
0.9571 |
0.9578 |
0.9536 |
0.9583 |
0.9586 |
0.9264 |
0.9068 |
0.9130 |
0.9249 |
0.4792 |
27.9898 |
44000 |
0.0961 |
0.9306 |
0.9640 |
0.9640 |
0.9662 |
0.9633 |
0.9617 |
0.9650 |
0.9374 |
0.9194 |
0.9268 |
0.9387 |
0.1084 |
30.5344 |
48000 |
0.0886 |
0.9364 |
0.9671 |
0.9672 |
0.9684 |
0.9600 |
0.9689 |
0.9712 |
0.9429 |
0.9257 |
0.9335 |
0.9437 |
0.0471 |
33.0789 |
52000 |
0.0721 |
0.9485 |
0.9735 |
0.9735 |
0.9772 |
0.9674 |
0.9729 |
0.9767 |
0.9528 |
0.9402 |
0.9467 |
0.9542 |
0.0722 |
35.6234 |
56000 |
0.0646 |
0.9554 |
0.9772 |
0.9772 |
0.9809 |
0.9728 |
0.9757 |
0.9794 |
0.9576 |
0.9488 |
0.9522 |
0.9629 |
0.0406 |
38.1679 |
60000 |
0.0644 |
0.9579 |
0.9785 |
0.9785 |
0.9792 |
0.9782 |
0.9762 |
0.9804 |
0.9634 |
0.9512 |
0.9543 |
0.9627 |
框架版本
- Transformers 4.48.3
- Pytorch 2.1.0
- Datasets 3.2.0
- Tokenizers 0.21.0
📄 许可证
许可证类型:其他