🚀 shlm - grc - en
本项目的模型可创建古希腊语和英语文本在共享向量空间中的句子嵌入。它通过特定方法和数据集进行训练,能有效处理这两种语言的句子嵌入任务。
🚀 快速开始
本模型可以使用sentence - transformers
库或HuggingFace Transformers
库调用,下面为你详细介绍使用方法。
✨ 主要特性
📦 安装指南
重要提示:本模型目前与sentence - transformers
库的最新版本不兼容。
你可以直接使用HuggingFace Transformers,或者使用sentence - transformers
的以下分支:
https://github.com/kevinkrahn/sentence - transformers
💻 使用示例
基础用法(Sentence - Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('kevinkrahn/shlm-grc-en')
embeddings = model.encode(sentences)
print(embeddings)
基础用法(HuggingFace Transformers)
在不使用sentence - transformers的情况下,你可以按以下方式使用该模型:首先,将输入传递给transformer模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output):
return model_output[0][:,0]
sentences = ['This is an English sentence', 'Ὁ Παρθενών ἐστιν ἱερὸν καλὸν τῆς Ἀθήνης.']
model = AutoModel.from_pretrained('kevinkrahn/shlm-grc-en', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('kevinkrahn/shlm-grc-en', trust_remote_code=True)
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = cls_pooling(model_output)
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
如果你使用此模型,请引用以下论文:
@inproceedings{riemenschneider-krahn-2024-heidelberg,
title = "Heidelberg-Boston @ {SIGTYP} 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers",
author = "Riemenschneider, Frederick and
Krahn, Kevin",
editor = "Hahn, Michael and
Sorokin, Alexey and
Kumar, Ritesh and
Shcherbakov, Andreas and
Otmakhova, Yulia and
Yang, Jinrui and
Serikov, Oleg and
Rani, Priya and
Ponti, Edoardo M. and
Murado{\u{g}}lu, Saliha and
Gao, Rena and
Cotterell, Ryan and
Vylomova, Ekaterina",
booktitle = "Proceedings of the 6th Workshop on Research in Computational Linguistic Typology and Multilingual NLP",
month = mar,
year = "2024",
address = "St. Julian's, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.sigtyp-1.16",
pages = "131--141",
}
@inproceedings{krahn-etal-2023-sentence,
title = "Sentence Embedding Models for {A}ncient {G}reek Using Multilingual Knowledge Distillation",
author = "Krahn, Kevin and
Tate, Derrick and
Lamicela, Andrew C.",
editor = "Anderson, Adam and
Gordin, Shai and
Li, Bin and
Liu, Yudong and
Passarotti, Marco C.",
booktitle = "Proceedings of the Ancient Language Processing Workshop",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.alp-1.2",
pages = "13--22",
}
📄 许可证
本项目采用MIT许可证。