🚀 outputs/ablation-141-a128.dpo.armorm.rp-shisa-v2-llama-3.1-8b模型
该模型是一个基于Transformer架构的语言模型,它通过微调特定基础模型得到,使用了DPO方法进行训练,能在文本生成等任务中展现出良好的性能。
🚀 快速开始
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="None", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
✨ 主要特性
🔧 技术细节
训练过程

此模型使用DPO方法进行训练,该方法在论文 Direct Preference Optimization: Your Language Model is Secretly a Reward Model 中被提出。
框架版本
属性 |
详情 |
TRL |
0.15.1 |
Transformers |
4.50.0 |
Pytorch |
2.6.0 |
Datasets |
3.4.1 |
Tokenizers |
0.21.1 |
📄 许可证
该模型遵循指定的许可证,具体请查看 license
文件。
📚 引用信息
引用DPO
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
引用TRL
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}