🚀 中文古代GPT2模型
本模型用于生成古代中文文本,借助预训练技术,能够依据给定的文本内容生成符合古代中文语境和风格的语句。通过不同的预训练工具和丰富的训练数据,为古代中文文本生成提供了有力支持。
🚀 快速开始
你可以使用文本生成管道直接使用该模型:
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-ancient")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-ancient")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("当是时", max_length=100, do_sample=True)
[{'generated_text': '[CLS]当是时 所 议 者 不 为 无 据 , 况 亦 在 之 列 乎 ? 然 则 今 日 之 事 , 所 当 思 者 在 何 ? 欲 求 国 是 于 天 下 , 莫 在 于 得 人 。 臣 以 为 求 人 之 法 , 不 在 多 用 官 一 途 。 诚 使 得 才 者 众 , 人 才 者 优 , 则 治 所 当 得 , 而 不 事 于 官 者 , 人 才 乃 其 常 也 。 所 当 讲 者'}]
✨ 主要特性
📦 安装指南
数据预处理
python3 preprocess.py --corpus_path corpora/ancient_chinese.txt \
--vocab_path models/google_zh_ancient_vocab.txt \
--dataset_path ancient_chinese_dataset.pt --processes_num 16 \
--seq_length 320 --data_processor lm
模型预训练
python3 pretrain.py --dataset_path ancient_chinese_dataset.pt \
--vocab_path models/google_zh_ancient_vocab.txt \
--config_path models/bert_base_config.json \
--output_model_path models/ancient_chinese_gpt2_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 500000 --save_checkpoint_steps 100000 --report_steps 10000 \
--learning_rate 5e-4 --batch_size 32
模型格式转换
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path models/ancient_chinese_gpt2_model.bin-500000 \
--output_model_path pytorch_model.bin \
--layers_num 12
📚 详细文档
训练数据
训练数据包含 300 万条古代中文文本,这些文本由 daizhigev20 收集。由于部分古代语料没有标点,我们使用了由 北京师范大学 ICIP 实验室 开发的 古代中文标点系统。
训练过程
该模型在 腾讯云 上通过 UER-py 进行预训练。我们以 320 的序列长度进行了 500000 步的预训练,并使用扩展词汇表来处理未登录词。古代中文语料中出现次数大于或等于 100 的汉字被添加到词汇表中。
BibTeX 引用和引用信息
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
@article{zhao2023tencentpretrain,
title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
journal={ACL 2023},
pages={217},
year={2023}
}
📄 许可证
文档中未提及相关许可证信息。