Z1 7B
模型简介
该模型通过思维迁移模式实现高效推理,特别适用于代码生成和复杂问题解决任务。
模型特点
思维迁移推理
通过独特的思维迁移模式实现更高效的推理过程
代码优化
特别针对代码生成和优化任务进行训练
高效扩展
支持在测试时进行高效扩展
模型能力
文本生成
代码生成
复杂问题解决
推理任务
使用案例
编程辅助
代码生成
根据自然语言描述生成代码
代码优化
对现有代码进行优化和改进
问题解决
复杂推理
解决需要多步推理的复杂问题
🚀 Z1: 基于代码的高效测试时缩放
本项目旨在训练大语言模型,使其能够以转换思维的方式进行推理,为相关领域的研究和应用提供了新的思路和方法。
🚀 快速开始
若要开启转换思维模式,请参考 https://github.com/efficientscaling/Z1。
✨ 主要特性
- 基础模型:Qwen/Qwen2.5-Coder-7B-Instruct
- 库名称:transformers
- 许可证:MIT
- 评估指标:准确率
- 任务类型:文本生成
属性 | 详情 |
---|---|
基础模型 | Qwen/Qwen2.5-Coder-7B-Instruct |
库名称 | transformers |
许可证 | MIT |
评估指标 | 准确率 |
任务类型 | 文本生成 |
📚 详细文档
论文
模型
代码仓库
💻 使用示例
基础用法
import copy
from typing import List
from dataclasses import dataclass
import gradio as gr
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
BOX=r"\boxed{}"
ANSWER_WITH_BOX=f"\n\nI overthought it, the final answer in {BOX} should be:\n\n"
ANSWER_WITHOUT_BOX=f"\n\nI overthought it, the final answer should be:\n\n"
model_name = "efficientscaling/Z1-7B"
@dataclass
class ThinkingLLM(LLM):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def thinking_generate(self, prompts: List[str], sampling_params: SamplingParams = None, max_tokens_for_thinking: int = None):
# If no SamplingParams is provided, create a default one
if sampling_params is None:
raise ValueError("Sampling_params can't be None!")
else:
all_max_tokens = sampling_params.max_tokens
# Override the max_tokens in the provided SamplingParams with the budget
sampling_params.max_tokens = max_tokens_for_thinking
print(f"All tokens: {all_max_tokens}")
print(f"Tokens for thinking: {max_tokens_for_thinking}")
trajectories = self.generate(prompts, sampling_params)
rethinking_str = ANSWER_WITHOUT_BOX
sampling_params.max_tokens = all_max_tokens
answers = copy.deepcopy(trajectories)
unfinished_id = []
thinking_token = 0
new_prompts = []
for id, traj in enumerate(trajectories):
if traj.outputs[0].finish_reason == 'length':
unfinished_id.append(id)
new_prompts.append(prompts[id] + traj.outputs[0].text + rethinking_str)
thinking_token += len(traj.outputs[0].token_ids)
avg_thinking_token = thinking_token / len(prompts)
if new_prompts:
print(new_prompts[0])
o = self.generate(
new_prompts,
sampling_params=sampling_params,
)
for i, uid in enumerate(unfinished_id):
answers[uid] = o[i]
return new_prompts, answers
def generate_text(prompt, max_tokens, max_tokens_for_thinking, temperature, top_p):
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
skip_special_tokens=False,
)
trajectories, outputs = llm.thinking_generate(prompt, sampling_params, max_tokens_for_thinking=max_tokens_for_thinking)
return trajectories[0] + '\n\n' + outputs[0].outputs[0].text if trajectories else outputs[0].outputs[0].text
llm = ThinkingLLM(
model=model_name,
tensor_parallel_size=1,
gpu_memory_utilization=0.96,
)
with gr.Blocks() as demo:
gr.Markdown("# Reason with shifted thinking")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Input",
lines=5,
)
max_tokens_for_thinking_input = gr.Slider(
label="shifted_thinking_window_size",
minimum=1,
maximum=32786,
value=4000,
step=1,
)
max_tokens_input = gr.Slider(
label="all_max_tokens",
minimum=1,
maximum=32786,
value=32786,
step=1,
)
temperature_input = gr.Slider(
label="Temperature",
minimum=00,
maximum=2.0,
value=0,
step=0.1,
)
top_p_input = gr.Slider(
label="Top-p",
minimum=0.0,
maximum=1.0,
value=1,
step=0.01,
)
generate_button = gr.Button("Generate")
with gr.Column():
output_text = gr.Textbox(
label="Shifted Thinking Window",
placeholder="Text is here...",
lines=10,
)
generate_button.click(
fn=generate_text,
inputs=[prompt_input, max_tokens_for_thinking_input,max_tokens_input, temperature_input, top_p_input],
outputs=output_text,
)
if __name__ == "__main__":
demo.launch()
📄 许可证
本项目采用 MIT 许可证。
📜 引用
@misc{yu2025efficientscaling,
title={Z1: Efficient Test-time Scaling with Code},
author={Zhaojian Yu and Yinghao Wu and Yilun Zhao and Arman Cohan and Xiao-Ping Zhang},
year={2025},
eprint={2504.00810},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2504.00810},
}
Phi 2 GGUF
其他
Phi-2是微软开发的一个小型但强大的语言模型,具有27亿参数,专注于高效推理和高质量文本生成。
大型语言模型 支持多种语言
P
TheBloke
41.5M
205
Roberta Large
MIT
基于掩码语言建模目标预训练的大型英语语言模型,采用改进的BERT训练方法
大型语言模型 英语
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基础模型的蒸馏版本,在保持相近性能的同时更轻量高效,适用于序列分类、标记分类等自然语言处理任务。
大型语言模型 英语
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一个多语言大语言模型,针对多语言对话用例进行了优化,在常见的行业基准测试中表现优异。
大型语言模型 英语
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基于100种语言的2.5TB过滤CommonCrawl数据预训练的多语言模型,采用掩码语言建模目标进行训练。
大型语言模型 支持多种语言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基于Transformer架构的英语预训练模型,通过掩码语言建模目标在海量文本上训练,支持文本特征提取和下游任务微调
大型语言模型 英语
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI发布的开放预训练Transformer语言模型套件,参数量从1.25亿到1750亿,旨在对标GPT-3系列性能,同时促进大规模语言模型的开放研究。
大型语言模型 英语
O
facebook
6.3M
198
1
基于transformers库的预训练模型,适用于多种NLP任务
大型语言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多语言大语言模型系列,包含8B、70B和405B参数规模,支持8种语言和代码生成,优化了多语言对话场景。
大型语言模型
Transformers 支持多种语言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基础版是由Google开发的文本到文本转换Transformer模型,参数规模2.2亿,支持多语言NLP任务。
大型语言模型 支持多种语言
T
google-t5
5.4M
702
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98