Reranker ModernBERT Base Gooaq Bce
这是一个基于ModernBERT-base微调的交叉编码器模型,用于文本重排序和语义搜索任务。
下载量 16
发布时间 : 3/29/2025
模型简介
该模型是一个交叉编码器,专门用于计算文本对的相似度分数,适用于信息检索中的重排序任务。
模型特点
长文本处理能力
支持最大8192个标记的序列长度,适合处理长文本
高效重排序
专为信息检索中的重排序任务优化,能有效提升搜索结果质量
基于ModernBERT
基于ModernBERT-base模型微调,继承了其强大的语义理解能力
模型能力
文本相似度计算
搜索结果重排序
问答对匹配
使用案例
信息检索
搜索引擎结果重排序
对搜索引擎返回的初步结果进行重新排序,提高相关结果排名
在GooAQ开发集上达到0.7686的NDCG@10
问答系统
评估问题和候选答案的相关性,选择最佳答案
在NanoNQ数据集上达到0.5595的平均精度
🚀 在GooAQ上训练的ModernBERT-base
这是一个基于answerdotai/ModernBERT-base,使用sentence-transformers库微调得到的交叉编码器模型。它可以计算文本对的得分,可用于文本重排序和语义搜索。
🚀 快速开始
这个模型可以计算文本对的得分,可用于文本重排序和语义搜索。
✨ 主要特性
- 基于answerdotai/ModernBERT-base微调,具有良好的语义理解能力。
- 能够计算文本对的得分,可用于文本重排序和语义搜索。
- 支持最大长度为8192的输入序列。
📦 安装指南
首先安装Sentence Transformers库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import CrossEncoder
# 从🤗 Hub下载模型
model = CrossEncoder("akr2002/reranker-ModernBERT-base-gooaq-bce")
# 获取文本对的得分
pairs = [
['how do you find mass?', "Divide the object's weight by the acceleration of gravity to find the mass. You'll need to convert the weight units to Newtons. For example, 1 kg = 9.807 N. If you're measuring the mass of an object on Earth, divide the weight in Newtons by the acceleration of gravity on Earth (9.8 meters/second2) to get mass."],
['how do you find mass?', "In general use, 'High Mass' means a full ceremonial Mass, most likely with music, and also with incense if they're particularly traditional. ... Incense is used quite a lot. Low Mass in the traditional rite is celebrated by one priest, and usually only one or two altar servers."],
['how do you find mass?', 'A neutron has a slightly larger mass than the proton. These are often given in terms of an atomic mass unit, where one atomic mass unit (u) is defined as 1/12th the mass of a carbon-12 atom. You can use that to prove that a mass of 1 u is equivalent to an energy of 931.5 MeV.'],
['how do you find mass?', 'Mass is the amount of matter in a body, normally measured in grams or kilograms etc. Weight is a force that pulls on a mass and is measured in Newtons. ... Density basically means how much mass is occupied in a specific volume or space. Different materials of the same size may have different masses because of its density.'],
['how do you find mass?', 'Receiver – Mass communication is the transmission of the message to a large number of recipients. This mass of receivers, are often called as mass audience. The Mass audience is large, heterogenous and anonymous in nature. The receivers are scattered across a given village, state or country.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# 或者根据与单个文本的相似度对不同文本进行排序
ranks = model.rank(
'how do you find mass?',
[
"Divide the object's weight by the acceleration of gravity to find the mass. You'll need to convert the weight units to Newtons. For example, 1 kg = 9.807 N. If you're measuring the mass of an object on Earth, divide the weight in Newtons by the acceleration of gravity on Earth (9.8 meters/second2) to get mass.",
"In general use, 'High Mass' means a full ceremonial Mass, most likely with music, and also with incense if they're particularly traditional. ... Incense is used quite a lot. Low Mass in the traditional rite is celebrated by one priest, and usually only one or two altar servers.",
'A neutron has a slightly larger mass than the proton. These are often given in terms of an atomic mass unit, where one atomic mass unit (u) is defined as 1/12th the mass of a carbon-12 atom. You can use that to prove that a mass of 1 u is equivalent to an energy of 931.5 MeV.',
'Mass is the amount of matter in a body, normally measured in grams or kilograms etc. Weight is a force that pulls on a mass and is measured in Newtons. ... Density basically means how much mass is occupied in a specific volume or space. Different materials of the same size may have different masses because of its density.',
'Receiver – Mass communication is the transmission of the message to a large number of recipients. This mass of receivers, are often called as mass audience. The Mass audience is large, heterogenous and anonymous in nature. The receivers are scattered across a given village, state or country.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 交叉编码器 |
基础模型 | answerdotai/ModernBERT-base |
最大序列长度 | 8192个标记 |
输出标签数量 | 1个标签 |
语言 | 英语 |
许可证 | apache-2.0 |
模型来源
- 文档:Sentence Transformers文档
- 文档:交叉编码器文档
- 仓库:GitHub上的Sentence Transformers
- Hugging Face:Hugging Face上的交叉编码器
评估
指标
交叉编码器重排序(数据集:gooaq-dev
)
使用CrossEncoderRerankingEvaluator
进行评估,参数如下:
{
"at_k": 10,
"always_rerank_positives": false
}
指标 | 值 |
---|---|
map | 0.7258 (+0.1946) |
mrr@10 | 0.7245 (+0.2005) |
ndcg@10 | 0.7686 (+0.1774) |
交叉编码器重排序(数据集:NanoMSMARCO_R100
, NanoNFCorpus_R100
, NanoNQ_R100
)
使用CrossEncoderRerankingEvaluator
进行评估,参数如下:
{
"at_k": 10,
"always_rerank_positives": true
}
指标 | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
---|---|---|---|
map | 0.4807 (-0.0089) | 0.3866 (+0.1256) | 0.5595 (+0.1399) |
mrr@10 | 0.4689 (-0.0086) | 0.6058 (+0.1060) | 0.5752 (+0.1485) |
ndcg@10 | 0.5499 (+0.0095) | 0.4233 (+0.0982) | 0.6191 (+0.1184) |
交叉编码器Nano BEIR(数据集:NanoBEIR_R100_mean
)
使用CrossEncoderNanoBEIREvaluator
进行评估,参数如下:
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
指标 | 值 |
---|---|
map | 0.4756 (+0.0855) |
mrr@10 | 0.5500 (+0.0820) |
ndcg@10 | 0.5308 (+0.0754) |
训练详情
训练数据集
未命名数据集
- 大小:578,402个训练样本
- 列:
question
、answer
和label
- 基于前1000个样本的近似统计信息:
| | 问题 | 答案 | 标签 |
|------|------|------|------|
| 类型 | 字符串 | 字符串 | 整数 |
| 详情 |
- 最小:17个字符
- 平均:44.75个字符
- 最大:84个字符
- 最小:54个字符
- 平均:252.51个字符
- 最大:388个字符
- 0:~83.00%
- 1:~17.00%
- 样本:
| 问题 | 答案 | 标签 |
|------|------|------|
|
how do you find mass?
|Divide the object's weight by the acceleration of gravity to find the mass. You'll need to convert the weight units to Newtons. For example, 1 kg = 9.807 N. If you're measuring the mass of an object on Earth, divide the weight in Newtons by the acceleration of gravity on Earth (9.8 meters/second2) to get mass.
|1
| |how do you find mass?
|In general use, 'High Mass' means a full ceremonial Mass, most likely with music, and also with incense if they're particularly traditional. ... Incense is used quite a lot. Low Mass in the traditional rite is celebrated by one priest, and usually only one or two altar servers.
|0
| |how do you find mass?
|A neutron has a slightly larger mass than the proton. These are often given in terms of an atomic mass unit, where one atomic mass unit (u) is defined as 1/12th the mass of a carbon-12 atom. You can use that to prove that a mass of 1 u is equivalent to an energy of 931.5 MeV.
|0
|
使用的损失函数为BinaryCrossEntropyLoss
,参数如下:
{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": 5
}
训练超参数
非默认超参数
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 4load_best_model_at_end
: True
所有超参数
点击展开
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
训练日志
轮次 | 步骤 | 训练损失 | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.1474 (-0.4438) | 0.0356 (-0.5048) | 0.2344 (-0.0907) | 0.0268 (-0.4739) | 0.0989 (-0.3564) |
0.0000 | 1 | 1.1353 | - | - | - | - | - |
0.0277 | 1000 | 1.1797 | - | - | - | - | - |
0.0553 | 2000 | 0.8539 | - | - | - | - | - |
0.0830 | 3000 | 0.7438 | - | - | - | - | - |
0.1106 | 4000 | 0.7296 | 0.7119 (+0.1206) | 0.5700 (+0.0296) | 0.3410 (+0.0160) | 0.6012 (+0.1005) | 0.5041 (+0.0487) |
0.1383 | 5000 | 0.6705 | - | - | - | - | - |
0.1660 | 6000 | 0.6624 | - | - | - | - | - |
0.1936 | 7000 | 0.6685 | - | - | - | - | - |
0.2213 | 8000 | 0.6305 | 0.7328 (+0.1415) | 0.5504 (+0.0099) | 0.4056 (+0.0805) | 0.6947 (+0.1941) | 0.5502 (+0.0948) |
0.2490 | 9000 | 0.6353 | - | - | - | - | - |
0.2766 | 10000 | 0.6118 | - | - | - | - | - |
0.3043 | 11000 | 0.6097 | - | - | - | - | - |
0.3319 | 12000 | 0.6003 | 0.7423 (+0.1510) | 0.5817 (+0.0413) | 0.3817 (+0.0566) | 0.6152 (+0.1145) | 0.5262 (+0.0708) |
0.3596 | 13000 | 0.5826 | - | - | - | - | - |
0.3873 | 14000 | 0.5935 | - | - | - | - | - |
0.4149 | 15000 | 0.5826 | - | - | - | - | - |
0.4426 | 16000 | 0.5723 | 0.7557 (+0.1645) | 0.5453 (+0.0049) | 0.4029 (+0.0779) | 0.6260 (+0.1253) | 0.5247 (+0.0693) |
0.4702 | 17000 | 0.582 | - | - | - | - | - |
0.4979 | 18000 | 0.5631 | - | - | - | - | - |
0.5256 | 19000 | 0.5705 | - | - | - | - | - |
0.5532 | 20000 | 0.544 | 0.7604 (+0.1692) | 0.5636 (+0.0232) | 0.4112 (+0.0862) | 0.6260 (+0.1253) | 0.5336 (+0.0782) |
0.5809 | 21000 | 0.5289 | - | - | - | - | - |
0.6086 | 22000 | 0.5431 | - | - | - | - | - |
0.6362 | 23000 | 0.5449 | - | - | - | - | - |
0.6639 | 24000 | 0.5338 | 0.7608 (+0.1696) | 0.5384 (-0.0020) | 0.4327 (+0.1077) | 0.5906 (+0.0899) | 0.5206 (+0.0652) |
0.6915 | 25000 | 0.5401 | - | - | - | - | - |
0.7192 | 26000 | 0.5535 | - | - | - | - | - |
0.7469 | 27000 | 0.5353 | - | - | - | - | - |
0.7745 | 28000 | 0.5157 | 0.7635 (+0.1723) | 0.5217 (-0.0188) | 0.4171 (+0.0921) | 0.5543 (+0.0537) | 0.4977 (+0.0423) |
0.8022 | 29000 | 0.5153 | - | - | - | - | - |
0.8299 | 30000 | 0.5122 | - | - | - | - | - |
0.8575 | 31000 | 0.5108 | - | - | - | - | - |
0.8852 | 32000 | 0.5303 | 0.7685 (+0.1773) | 0.5538 (+0.0134) | 0.4147 (+0.0897) | 0.6155 (+0.1149) | 0.5280 (+0.0727) |
0.9128 | 33000 | 0.5363 | - | - | - | - | - |
0.9405 | 34000 | 0.4996 | - | - | - | - | - |
0.9682 | 35000 | 0.5193 | - | - | - | - | - |
0.9958 | 36000 | 0.4995 | 0.7686 (+0.1774) | 0.5499 (+0.0095) | 0.4233 (+0.0982) | 0.6191 (+0.1184) | 0.5308 (+0.0754) |
-1 | -1 | - | 0.7686 (+0.1774) | 0.5499 (+0.0095) | 0.4233 (+0.0982) | 0.6191 (+0.1184) | 0.5308 (+0.0754) |
加粗行表示保存的检查点。
框架版本
- Python: 3.12.7
- Sentence Transformers: 4.0.1
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
📄 许可证
本项目采用apache-2.0许可证。
引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98