🚀 Bloom-3B SFT模型
Bloom-3B SFT模型基于Bloom-zh的30亿参数模型,在人类示范的对话数据上进行了微调。它能够处理英文、中文和日文,为多语言对话场景提供支持。

该模型基于Bloom-zh的30亿参数模型,在2023年4月12日前通过https://open-assistant.io/人类反馈网页应用收集的人类示范对话数据上进行了微调。
在序列长度为5120上进行了监督微调。
✨ 主要特性
- 多语言支持:支持英文、中文和日文,适用于不同语言的对话场景。
- 微调优化:基于人类示范对话数据进行微调,提升了模型的对话能力。
📦 安装指南
文档未提供安装步骤,故跳过此章节。
💻 使用示例
基础用法
两个特殊标记 <|prompter|>
和 <|assistant|>
分别用于标记用户和助手回复的开始,每个回复以 </s>
标记结束。
输入提示示例:
<|prompter|>What is a meme, and what's the history behind this word?</s><|assistant|>
输入以 <|assistant|>
标记结尾,以提示模型开始生成助手的回复。
📚 详细文档
模型详情
基准测试
开发详情
命令:deepspeed trainer_sft.py --configs defaults bloom-zh-3b datasets --num_train_epochs 2 --deepspeed
数据:
datasets:
- wmt2019_zh-en:
max_val_set: 1000
max_train_set: 20000
- ted_trans_en-ja:
max_val_set: 1000
max_train_set: 20000
- ted_trans_zh-ja:
max_val_set: 1000
max_train_set: 20000
- ikala:
input_file_path: export_conversation_v4.4.jsonl
val_split: 0.05
- dolly15k:
val_split: 0.05
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk,zh,ja,th,ko"
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
val_split: 0.05
- joke
- gsm8k
- webgpt
由于使用了内部数据集 ikala
,如果您尝试复现,请移除该数据集。
bloom-zh-3b配置:
bloom-zh-3b:
dtype: fp16
log_dir: "bloom-zh_3b"
learning_rate: 8e-6
model_name: ckip-joint/bloom-3b-zh
output_dir: bloom_model_v4_3b
weight_decay: 0.0
max_length: 5120
warmup_steps: 2000
gradient_checkpointing: true
gradient_accumulation_steps: 32
per_device_train_batch_size: 1
per_device_eval_batch_size: 1
eval_steps: 500
save_steps: 1000
num_train_epochs: 8
save_total_limit: 2
deepspeed_config: configs/zero3_config_sft.json
零配置:
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"warmup_type": "linear",
"total_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
🔧 技术细节
文档未提供足够的技术实现细节(具体技术说明少于50字),故跳过此章节。
📄 许可证
该模型使用MEDIATEK RESEARCH许可证 (链接) 和RAIL许可证v1.0 (链接),仅供非商业用途。