🚀 T2I Adapter - Zoedepth
T2I Adapter是一个为稳定扩散模型提供额外条件的网络。每个T2I检查点接收不同类型的条件作为输入,并与特定的基础稳定扩散检查点一起使用。
此检查点为稳定扩散1.5检查点提供基于ZoeDepth深度估计的条件。
🚀 快速开始
依赖安装
pip install diffusers transformers matplotlib
运行代码
from PIL import Image
import torch
import numpy as np
import matplotlib
from diffusers import T2IAdapter, StableDiffusionAdapterPipeline
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
"""Converts a depth map to a color image.
Args:
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
Returns:
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
"""
if isinstance(value, torch.Tensor):
value = value.detach().cpu().numpy()
value = value.squeeze()
if invalid_mask is None:
invalid_mask = value == invalid_val
mask = np.logical_not(invalid_mask)
vmin = np.percentile(value[mask],2) if vmin is None else vmin
vmax = np.percentile(value[mask],85) if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin)
else:
value = value * 0.
value[invalid_mask] = np.nan
cmapper = matplotlib.cm.get_cmap(cmap)
if value_transform:
value = value_transform(value)
value = cmapper(value, bytes=True)
img = value[...]
img[invalid_mask] = background_color
if gamma_corrected:
img = img / 255
img = np.power(img, 2.2)
img = img * 255
img = img.astype(np.uint8)
return img
model = torch.hub.load("isl-org/ZoeDepth", "ZoeD_N", pretrained=True)
img = Image.open('./images/zoedepth_in.png')
out = model.infer_pil(img)
zoedepth_image = Image.fromarray(colorize(out)).convert('RGB')
zoedepth_image.save('images/zoedepth.png')
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_zoedepth_sd15v1", torch_dtype=torch.float16)
pipe = StableDiffusionAdapterPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", adapter=adapter, safety_checker=None, torch_dtype=torch.float16, variant="fp16"
)
pipe.to('cuda')
zoedepth_image_out = pipe(prompt="motorcycle", image=zoedepth_image).images[0]
zoedepth_image_out.save('images/zoedepth_out.png')

✨ 主要特性
T2I Adapter网络能够为稳定扩散模型提供额外的条件输入,每个T2I检查点可接收不同类型的条件,与特定的基础稳定扩散检查点配合使用,增强了文本到图像扩散模型的可控性。
📚 详细文档
模型详情
- 开发者:T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models
- 模型类型:基于扩散的文本到图像生成模型
- 语言:英语
- 许可证:Apache 2.0
- 更多信息资源:GitHub仓库,论文。
- 引用方式:
@misc{
title={T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models},
author={Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie},
year={2023},
eprint={2302.08453},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
检查点
📄 许可证
本模型使用Apache 2.0许可证。