🚀 segformer-b3-fashion
segformer-b3-fashion 是一个图像分割模型,它基于特定数据集进行微调,可对时尚相关的图像进行分割,识别多种时尚物品和服饰细节,在时尚图像分析等领域有重要应用价值。
🚀 快速开始
segformer-b3-fashion 模型是 nvidia/mit-b3 在 sayeed99/fashion_segmentation 数据集上的微调版本,微调过程使用原始图像尺寸,未进行缩放。
以下是使用该模型进行图像分割的示例代码:
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn
processor = SegformerImageProcessor.from_pretrained("sayeed99/segformer-b3-fashion")
model = AutoModelForSemanticSegmentation.from_pretrained("sayeed99/segformer-b3-fashion")
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)
💻 使用示例
基础用法
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn
processor = SegformerImageProcessor.from_pretrained("sayeed99/segformer-b3-fashion")
model = AutoModelForSemanticSegmentation.from_pretrained("sayeed99/segformer-b3-fashion")
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)
标签说明
模型的分割标签如下:
{"0":"未标记", "1": "衬衫、短上衣", "2": "上衣、T恤、运动衫", "3": "毛衣", "4": "开襟羊毛衫", "5": "夹克", "6": "背心", "7": "裤子", "8": "短裤", "9": "裙子", "10": "外套", "11": "连衣裙", "12": "连身裤", "13": "披肩", "14": "眼镜", "15": "帽子", "16": "头带、头巾、发饰", "17": "领带", "18": "手套", "19": "手表", "20": "腰带", "21": "腿套", "22": "紧身裤、长袜", "23": "袜子", "24": "鞋子", "25": "包、钱包", "26": "围巾", "27": "雨伞", "28": "兜帽", "29": "衣领", "30": "翻领", "31": "肩章", "32": "袖子", "33": "口袋", "34": "领口", "35": "搭扣", "36": "拉链", "37": "贴花", "38": "珠子", "39": "蝴蝶结", "40": "花朵", "41": "流苏", "42": "丝带", "43": "铆钉", "44": "褶边", "45": "亮片", "46": "缨穗"}
📚 详细文档
框架版本
- Transformers 4.30.0
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3
📄 许可证
该模型的许可证信息可在 此处 查看。
📖 引用格式
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}