🚀 二值化SegFormer-B3模型
本模型是用于文档图像二值化(DIBCO)的语义分割模型,在DIBCO指标的评估集上取得了优秀的结果,为文档图像二值化任务提供了有效的解决方案。
🚀 快速开始
本模型是 nvidia/segformer-b3-1024-1024 的微调版本,在与 SauvolaNet 工作相同的13个数据集集合上进行微调,这些数据集可在其GitHub 仓库 中公开获取。
它在DIBCO指标的评估集上取得了以下结果:
- 损失值(loss):0.0743
- 距离倒数失真(DRD):5.9548
- F值(F-measure):0.9840
- 伪F值(pseudo F-measure):0.9740
- 峰值信噪比(PSNR):16.0119
其中,PSNR 指峰值信噪比,DRD 指距离倒数失真。
有关上述DIBCO指标的更多信息,请参阅2017年的介绍性 论文。
✨ 主要特性
模型描述
本模型是正在进行的关于纯语义分割模型在文档图像二值化(DIBCO)方面研究的一部分。与最近将经典二值化算法与神经网络相结合的趋势不同,例如 DeepOtsu(作为大津法的扩展)和 SauvolaNet(作为Sauvola阈值算法的扩展)。
🔧 技术细节
训练过程
训练超参数
待补充
训练结果
训练损失 |
轮数 |
步数 |
验证损失 |
距离倒数失真(DRD) |
F值(F-measure) |
伪F值(pseudo F-measure) |
峰值信噪比(PSNR) |
0.6983 |
0.26 |
10 |
0.7079 |
199.5096 |
0.5945 |
0.5801 |
3.4552 |
0.6657 |
0.52 |
20 |
0.6755 |
149.2346 |
0.7006 |
0.6165 |
4.6752 |
0.6145 |
0.77 |
30 |
0.6433 |
109.7298 |
0.7831 |
0.6520 |
5.5489 |
0.5553 |
1.03 |
40 |
0.5443 |
53.7149 |
0.8952 |
0.8000 |
8.1736 |
0.4627 |
1.29 |
50 |
0.4896 |
32.7649 |
0.9321 |
0.8603 |
9.8706 |
0.3969 |
1.55 |
60 |
0.4327 |
21.5508 |
0.9526 |
0.8985 |
11.3400 |
0.3414 |
1.81 |
70 |
0.3002 |
11.0094 |
0.9732 |
0.9462 |
13.5901 |
0.2898 |
2.06 |
80 |
0.2839 |
10.1064 |
0.9748 |
0.9563 |
13.9796 |
0.2292 |
2.32 |
90 |
0.2427 |
9.4437 |
0.9761 |
0.9584 |
14.2161 |
0.2153 |
2.58 |
100 |
0.2095 |
8.8696 |
0.9771 |
0.9621 |
14.4319 |
0.1767 |
2.84 |
110 |
0.1916 |
8.6152 |
0.9776 |
0.9646 |
14.5528 |
0.1509 |
3.1 |
120 |
0.1704 |
8.0761 |
0.9791 |
0.9632 |
14.7961 |
0.1265 |
3.35 |
130 |
0.1561 |
8.5627 |
0.9784 |
0.9655 |
14.7400 |
0.132 |
3.61 |
140 |
0.1318 |
8.1849 |
0.9788 |
0.9670 |
14.8469 |
0.1115 |
3.87 |
150 |
0.1317 |
7.8438 |
0.9790 |
0.9657 |
14.9072 |
0.0983 |
4.13 |
160 |
0.1273 |
7.9405 |
0.9791 |
0.9673 |
14.9701 |
0.1001 |
4.39 |
170 |
0.1234 |
8.4132 |
0.9788 |
0.9691 |
14.8573 |
0.0862 |
4.65 |
180 |
0.1147 |
8.0838 |
0.9797 |
0.9678 |
15.0433 |
0.0713 |
4.9 |
190 |
0.1134 |
7.6027 |
0.9806 |
0.9687 |
15.2235 |
0.0905 |
5.16 |
200 |
0.1061 |
7.2973 |
0.9803 |
0.9699 |
15.1646 |
0.0902 |
5.42 |
210 |
0.1061 |
8.4049 |
0.9787 |
0.9699 |
14.8460 |
0.0759 |
5.68 |
220 |
0.1062 |
7.7147 |
0.9809 |
0.9695 |
15.2426 |
0.0638 |
5.94 |
230 |
0.1019 |
7.7449 |
0.9806 |
0.9695 |
15.2195 |
0.0852 |
6.19 |
240 |
0.0962 |
7.0221 |
0.9817 |
0.9693 |
15.4730 |
0.0677 |
6.45 |
250 |
0.0961 |
7.2520 |
0.9814 |
0.9710 |
15.3878 |
0.0668 |
6.71 |
260 |
0.0972 |
6.6658 |
0.9823 |
0.9689 |
15.6106 |
0.0701 |
6.97 |
270 |
0.0909 |
6.9454 |
0.9820 |
0.9713 |
15.5458 |
0.0567 |
7.23 |
280 |
0.0925 |
6.5498 |
0.9824 |
0.9718 |
15.5965 |
0.0624 |
7.48 |
290 |
0.0899 |
7.3125 |
0.9813 |
0.9717 |
15.3255 |
0.0649 |
7.74 |
300 |
0.0932 |
7.4915 |
0.9816 |
0.9684 |
15.5666 |
0.0524 |
8.0 |
310 |
0.0905 |
7.1666 |
0.9815 |
0.9711 |
15.4526 |
0.0693 |
8.26 |
320 |
0.0901 |
6.5627 |
0.9827 |
0.9704 |
15.7335 |
0.0528 |
8.52 |
330 |
0.0845 |
6.6690 |
0.9826 |
0.9734 |
15.5950 |
0.0632 |
8.77 |
340 |
0.0822 |
6.2661 |
0.9833 |
0.9723 |
15.8631 |
0.0522 |
9.03 |
350 |
0.0844 |
6.0073 |
0.9836 |
0.9715 |
15.9393 |
0.0568 |
9.29 |
360 |
0.0817 |
5.9460 |
0.9837 |
0.9721 |
15.9523 |
0.057 |
9.55 |
370 |
0.0900 |
7.9726 |
0.9812 |
0.9730 |
15.1229 |
0.052 |
9.81 |
380 |
0.0836 |
6.5444 |
0.9822 |
0.9712 |
15.6388 |
0.0568 |
10.06 |
390 |
0.0810 |
6.0359 |
0.9836 |
0.9714 |
15.9796 |
0.0481 |
10.32 |
400 |
0.0784 |
6.2110 |
0.9835 |
0.9724 |
15.9235 |
0.0513 |
10.58 |
410 |
0.0803 |
6.0990 |
0.9835 |
0.9715 |
15.9502 |
0.0595 |
10.84 |
420 |
0.0798 |
6.0829 |
0.9835 |
0.9720 |
15.9052 |
0.047 |
11.1 |
430 |
0.0779 |
5.8847 |
0.9838 |
0.9725 |
16.0043 |
0.0406 |
11.35 |
440 |
0.0802 |
5.7944 |
0.9838 |
0.9713 |
16.0620 |
0.0493 |
11.61 |
450 |
0.0781 |
6.0947 |
0.9836 |
0.9731 |
15.9033 |
0.064 |
11.87 |
460 |
0.0769 |
6.1257 |
0.9837 |
0.9736 |
15.9080 |
0.0622 |
12.13 |
470 |
0.0765 |
6.2964 |
0.9835 |
0.9739 |
15.8188 |
0.0457 |
12.39 |
480 |
0.0773 |
5.9826 |
0.9838 |
0.9728 |
16.0119 |
0.0447 |
12.65 |
490 |
0.0761 |
5.7977 |
0.9841 |
0.9728 |
16.0900 |
0.0515 |
12.9 |
500 |
0.0750 |
5.8569 |
0.9840 |
0.9729 |
16.0633 |
0.0357 |
13.16 |
510 |
0.0796 |
5.7990 |
0.9837 |
0.9713 |
16.0818 |
0.0503 |
13.42 |
520 |
0.0749 |
5.8323 |
0.9841 |
0.9736 |
16.0510 |
0.0508 |
13.68 |
530 |
0.0746 |
6.0361 |
0.9839 |
0.9735 |
15.9709 |
0.0533 |
13.94 |
540 |
0.0768 |
6.1596 |
0.9836 |
0.9740 |
15.9193 |
0.0503 |
14.19 |
550 |
0.0739 |
5.5900 |
0.9843 |
0.9723 |
16.1883 |
0.0515 |
14.45 |
560 |
0.0740 |
5.4660 |
0.9845 |
0.9727 |
16.2745 |
0.0502 |
14.71 |
570 |
0.0740 |
5.5895 |
0.9844 |
0.9736 |
16.2054 |
0.0401 |
14.97 |
580 |
0.0741 |
5.9694 |
0.9840 |
0.9747 |
15.9603 |
0.0495 |
15.23 |
590 |
0.0745 |
5.9136 |
0.9841 |
0.9740 |
16.0458 |
0.0413 |
15.48 |
600 |
0.0743 |
5.9548 |
0.9840 |
0.9740 |
16.0119 |
框架版本
- transformers 4.31.0
- torch 2.0.0
- datasets 2.13.1
- tokenizers 0.13.3
📄 许可证
本模型采用OpenRAIL许可证。
属性 |
详情 |
模型类型 |
二值化SegFormer-B3 |
训练数据 |
与 SauvolaNet 工作相同的13个数据集集合,可在其GitHub 仓库 中获取 |