đ binarization-segformer-b3
This model is a fine - tuned version of nvidia/segformer-b3-1024-1024, aiming to solve document image binarization problems and achieve excellent results on DIBCO metrics.
đ Quick Start
This binarization-segformer-b3
model is a fine - tuned version of nvidia/segformer-b3-1024-1024. It was fine - tuned on the same ensemble of 13 datasets as the SauvolaNet work, which are publicly available in their GitHub repository.
It achieves the following results on the evaluation set using DIBCO metrics:
- loss: 0.0743
- DRD: 5.9548
- F - measure: 0.9840
- pseudo F - measure: 0.9740
- PSNR: 16.0119
Here, PSNR stands for the peak signal - to - noise ratio and DRD stands for the distance reciprocal distortion. For more information on the above DIBCO metrics, see the 2017 introductory paper.
⨠Features
Model description
This model is part of on - going research on pure semantic segmentation models for document image binarization (DIBCO). It differs from the recent trend of adapting classical binarization algorithms with neural networks, such as DeepOtsu or SauvolaNet, which are extensions of Otsu's method and Sauvola thresholding algorithm, respectively.
đ§ Technical Details
Training procedure
Training hyperparameters
TBC
Training results
training loss |
epoch |
step |
validation loss |
DRD |
F - measure |
pseudo F - measure |
PSNR |
0.6983 |
0.26 |
10 |
0.7079 |
199.5096 |
0.5945 |
0.5801 |
3.4552 |
0.6657 |
0.52 |
20 |
0.6755 |
149.2346 |
0.7006 |
0.6165 |
4.6752 |
0.6145 |
0.77 |
30 |
0.6433 |
109.7298 |
0.7831 |
0.6520 |
5.5489 |
0.5553 |
1.03 |
40 |
0.5443 |
53.7149 |
0.8952 |
0.8000 |
8.1736 |
0.4627 |
1.29 |
50 |
0.4896 |
32.7649 |
0.9321 |
0.8603 |
9.8706 |
0.3969 |
1.55 |
60 |
0.4327 |
21.5508 |
0.9526 |
0.8985 |
11.3400 |
0.3414 |
1.81 |
70 |
0.3002 |
11.0094 |
0.9732 |
0.9462 |
13.5901 |
0.2898 |
2.06 |
80 |
0.2839 |
10.1064 |
0.9748 |
0.9563 |
13.9796 |
0.2292 |
2.32 |
90 |
0.2427 |
9.4437 |
0.9761 |
0.9584 |
14.2161 |
0.2153 |
2.58 |
100 |
0.2095 |
8.8696 |
0.9771 |
0.9621 |
14.4319 |
0.1767 |
2.84 |
110 |
0.1916 |
8.6152 |
0.9776 |
0.9646 |
14.5528 |
0.1509 |
3.1 |
120 |
0.1704 |
8.0761 |
0.9791 |
0.9632 |
14.7961 |
0.1265 |
3.35 |
130 |
0.1561 |
8.5627 |
0.9784 |
0.9655 |
14.7400 |
0.132 |
3.61 |
140 |
0.1318 |
8.1849 |
0.9788 |
0.9670 |
14.8469 |
0.1115 |
3.87 |
150 |
0.1317 |
7.8438 |
0.9790 |
0.9657 |
14.9072 |
0.0983 |
4.13 |
160 |
0.1273 |
7.9405 |
0.9791 |
0.9673 |
14.9701 |
0.1001 |
4.39 |
170 |
0.1234 |
8.4132 |
0.9788 |
0.9691 |
14.8573 |
0.0862 |
4.65 |
180 |
0.1147 |
8.0838 |
0.9797 |
0.9678 |
15.0433 |
0.0713 |
4.9 |
190 |
0.1134 |
7.6027 |
0.9806 |
0.9687 |
15.2235 |
0.0905 |
5.16 |
200 |
0.1061 |
7.2973 |
0.9803 |
0.9699 |
15.1646 |
0.0902 |
5.42 |
210 |
0.1061 |
8.4049 |
0.9787 |
0.9699 |
14.8460 |
0.0759 |
5.68 |
220 |
0.1062 |
7.7147 |
0.9809 |
0.9695 |
15.2426 |
0.0638 |
5.94 |
230 |
0.1019 |
7.7449 |
0.9806 |
0.9695 |
15.2195 |
0.0852 |
6.19 |
240 |
0.0962 |
7.0221 |
0.9817 |
0.9693 |
15.4730 |
0.0677 |
6.45 |
250 |
0.0961 |
7.2520 |
0.9814 |
0.9710 |
15.3878 |
0.0668 |
6.71 |
260 |
0.0972 |
6.6658 |
0.9823 |
0.9689 |
15.6106 |
0.0701 |
6.97 |
270 |
0.0909 |
6.9454 |
0.9820 |
0.9713 |
15.5458 |
0.0567 |
7.23 |
280 |
0.0925 |
6.5498 |
0.9824 |
0.9718 |
15.5965 |
0.0624 |
7.48 |
290 |
0.0899 |
7.3125 |
0.9813 |
0.9717 |
15.3255 |
0.0649 |
7.74 |
300 |
0.0932 |
7.4915 |
0.9816 |
0.9684 |
15.5666 |
0.0524 |
8.0 |
310 |
0.0905 |
7.1666 |
0.9815 |
0.9711 |
15.4526 |
0.0693 |
8.26 |
320 |
0.0901 |
6.5627 |
0.9827 |
0.9704 |
15.7335 |
0.0528 |
8.52 |
330 |
0.0845 |
6.6690 |
0.9826 |
0.9734 |
15.5950 |
0.0632 |
8.77 |
340 |
0.0822 |
6.2661 |
0.9833 |
0.9723 |
15.8631 |
0.0522 |
9.03 |
350 |
0.0844 |
6.0073 |
0.9836 |
0.9715 |
15.9393 |
0.0568 |
9.29 |
360 |
0.0817 |
5.9460 |
0.9837 |
0.9721 |
15.9523 |
0.057 |
9.55 |
370 |
0.0900 |
7.9726 |
0.9812 |
0.9730 |
15.1229 |
0.052 |
9.81 |
380 |
0.0836 |
6.5444 |
0.9822 |
0.9712 |
15.6388 |
0.0568 |
10.06 |
390 |
0.0810 |
6.0359 |
0.9836 |
0.9714 |
15.9796 |
0.0481 |
10.32 |
400 |
0.0784 |
6.2110 |
0.9835 |
0.9724 |
15.9235 |
0.0513 |
10.58 |
410 |
0.0803 |
6.0990 |
0.9835 |
0.9715 |
15.9502 |
0.0595 |
10.84 |
420 |
0.0798 |
6.0829 |
0.9835 |
0.9720 |
15.9052 |
0.047 |
11.1 |
430 |
0.0779 |
5.8847 |
0.9838 |
0.9725 |
16.0043 |
0.0406 |
11.35 |
440 |
0.0802 |
5.7944 |
0.9838 |
0.9713 |
16.0620 |
0.0493 |
11.61 |
450 |
0.0781 |
6.0947 |
0.9836 |
0.9731 |
15.9033 |
0.064 |
11.87 |
460 |
0.0769 |
6.1257 |
0.9837 |
0.9736 |
15.9080 |
0.0622 |
12.13 |
470 |
0.0765 |
6.2964 |
0.9835 |
0.9739 |
15.8188 |
0.0457 |
12.39 |
480 |
0.0773 |
5.9826 |
0.9838 |
0.9728 |
16.0119 |
0.0447 |
12.65 |
490 |
0.0761 |
5.7977 |
0.9841 |
0.9728 |
16.0900 |
0.0515 |
12.9 |
500 |
0.0750 |
5.8569 |
0.9840 |
0.9729 |
16.0633 |
0.0357 |
13.16 |
510 |
0.0796 |
5.7990 |
0.9837 |
0.9713 |
16.0818 |
0.0503 |
13.42 |
520 |
0.0749 |
5.8323 |
0.9841 |
0.9736 |
16.0510 |
0.0508 |
13.68 |
530 |
0.0746 |
6.0361 |
0.9839 |
0.9735 |
15.9709 |
0.0533 |
13.94 |
540 |
0.0768 |
6.1596 |
0.9836 |
0.9740 |
15.9193 |
0.0503 |
14.19 |
550 |
0.0739 |
5.5900 |
0.9843 |
0.9723 |
16.1883 |
0.0515 |
14.45 |
560 |
0.0740 |
5.4660 |
0.9845 |
0.9727 |
16.2745 |
0.0502 |
14.71 |
570 |
0.0740 |
5.5895 |
0.9844 |
0.9736 |
16.2054 |
0.0401 |
14.97 |
580 |
0.0741 |
5.9694 |
0.9840 |
0.9747 |
15.9603 |
0.0495 |
15.23 |
590 |
0.0745 |
5.9136 |
0.9841 |
0.9740 |
16.0458 |
0.0413 |
15.48 |
600 |
0.0743 |
5.9548 |
0.9840 |
0.9740 |
16.0119 |
Framework versions
- transformers 4.31.0
- torch 2.0.0
- datasets 2.13.1
- tokenizers 0.13.3
đ License
The model is released under the OpenRAIL license.