🚀 图像特征提取模型AIMv2
AIMv2是一系列经过多模态自回归目标预训练的视觉模型,训练过程简单直接,可有效进行扩展。该模型在多模态理解基准测试、开放词汇目标检测和指代表达理解等任务中表现出色,具有很强的识别性能。
🚀 快速开始
模型信息
属性 |
详情 |
库名称 |
transformers |
许可证 |
apple-amlr |
评估指标 |
准确率 |
任务类型 |
图像特征提取 |
标签 |
视觉、图像特征提取、mlx、pytorch |
模型性能
数据集 |
准确率 |
ImageNet-1K |
87.6% |
iNaturalist-18 |
79.7% |
CIFAR-10 |
99.1% |
CIFAR-100 |
92.5% |
Food-101 |
96.3% |
DTD |
88.5% |
Oxford Pets |
96.4% |
Stanford Cars |
96.7% |
Camelyon17 |
93.8% |
Patch Camelyon |
89.4% |
RxRx1 |
6.7% |
EuroSAT |
98.4% |
FMoW |
62.1% |
DomainNet Infographic |
71.7% |
模型简介
[AIMv2论文
] [BibTeX
]
我们推出了AIMv2系列视觉模型,这些模型通过多模态自回归目标进行预训练。AIMv2的预训练过程简单直接,能够有效进行训练和扩展。AIMv2的一些亮点包括:
- 在大多数多模态理解基准测试中,性能优于OAI CLIP和SigLIP。
- 在开放词汇目标检测和指代表达理解任务中,性能优于DINOv2。
- 具有强大的识别性能,AIMv2 - 3B使用冻结主干在ImageNet上达到了*89.5%的准确率。
💻 使用示例
基础用法
PyTorch
import requests
from PIL import Image
from transformers import AutoImageProcessor, AutoModel
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained(
"apple/aimv2-large-patch14-336",
)
model = AutoModel.from_pretrained(
"apple/aimv2-large-patch14-336",
trust_remote_code=True,
)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
JAX
import requests
from PIL import Image
from transformers import AutoImageProcessor, FlaxAutoModel
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained(
"apple/aimv2-large-patch14-336",
)
model = FlaxAutoModel.from_pretrained(
"apple/aimv2-large-patch14-336",
trust_remote_code=True,
)
inputs = processor(images=image, return_tensors="jax")
outputs = model(**inputs)
📄 许可证
该项目使用apple-amlr
许可证。
📚 引用
如果您觉得我们的工作有用,请考虑引用以下文献:
@misc{fini2024multimodalautoregressivepretraininglarge,
author = {Fini, Enrico and Shukor, Mustafa and Li, Xiujun and Dufter, Philipp and Klein, Michal and Haldimann, David and Aitharaju, Sai and da Costa, Victor Guilherme Turrisi and Béthune, Louis and Gan, Zhe and Toshev, Alexander T and Eichner, Marcin and Nabi, Moin and Yang, Yinfei and Susskind, Joshua M. and El-Nouby, Alaaeldin},
url = {https://arxiv.org/abs/2411.14402},
eprint = {2411.14402},
eprintclass = {cs.CV},
eprinttype = {arXiv},
title = {Multimodal Autoregressive Pre-training of Large Vision Encoders},
year = {2024},
}