🚀 ViT - B - 16 - SigLIP - i18n - 256模型卡片
本模型是基于WebLI数据集训练的SigLIP(用于语言 - 图像预训练的Sigmoid损失)模型。它从Big Vision中的原始JAX检查点转换为PyTorch模型。这些权重可用于OpenCLIP(图像 + 文本)和timm(仅图像)。
🚀 快速开始
本模型可用于零样本图像分类任务,通过对比图像和文本的特征来实现分类。
✨ 主要特性
- 基于SigLIP架构,在WebLI数据集上进行训练。
- 可从原始JAX检查点转换为PyTorch模型。
- 权重可同时用于OpenCLIP和timm。
📦 安装指南
文档未提及安装步骤,跳过此章节。
💻 使用示例
基础用法
使用OpenCLIP
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer
model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-B-16-SigLIP-i18n-256')
tokenizer = get_tokenizer('hf-hub:timm/ViT-B-16-SigLIP-i18n-256')
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)
labels_list = ["a dog", "a cat", "a donut", "a beignet"]
text = tokenizer(labels_list, context_length=model.context_length)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features = F.normalize(image_features, dim=-1)
text_features = F.normalize(text_features, dim=-1)
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
print("Label probabilities: ", zipped_list)
使用timm
(仅用于图像嵌入)
from urllib.request import urlopen
from PIL import Image
import timm
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_base_patch16_siglip_256',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(image).unsqueeze(0))
📚 详细文档
模型详情
属性 |
详情 |
模型类型 |
对比图像 - 文本,零样本图像分类 |
原始仓库 |
https://github.com/google-research/big_vision |
训练数据 |
WebLI |
相关论文 |
- Sigmoid loss for language image pre-training: https://arxiv.org/abs/2303.15343 |
🔧 技术细节
文档未提供足够的技术实现细节,跳过此章节。
📄 许可证
本模型使用Apache 2.0许可证。
📚 引用
@article{zhai2023sigmoid,
title={Sigmoid loss for language image pre-training},
author={Zhai, Xiaohua and Mustafa, Basil and Kolesnikov, Alexander and Beyer, Lucas},
journal={arXiv preprint arXiv:2303.15343},
year={2023}
}
@misc{big_vision,
author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
title = {Big Vision},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/google-research/big_vision}}
}