🚀 RWKV-4 | 基于Pile数据集训练的1.69亿参数模型卡片
RWKV是一个由Bo Peng领导的项目。你可以通过Johan Wind的博客文章这里和这里了解更多关于该模型架构的信息。你还可以通过加入RWKV Discord服务器来深入了解这个项目。

🚀 快速开始
模型简述
以下是来自原仓库的描述:
RWKV是一种具有Transformer级大语言模型性能的循环神经网络(RNN)。它可以像GPT一样直接进行训练(可并行化)。它结合了RNN和Transformer的优点——性能出色、推理速度快、节省显存、训练速度快、具有“无限”上下文长度,并且能免费获得句子嵌入。
✨ 主要特性
- 数据集:使用了EleutherAI/pile数据集进行训练。
📚 详细文档
模型细节
模型架构的详细信息可以在上述博客文章以及Hugging Face关于该模型集成的博客文章中找到。
模型使用
将原始权重转换为Hugging Face格式
你可以使用convert_rwkv_checkpoint_to_hf.py
脚本,通过指定原始权重的仓库ID、文件名和输出目录来进行转换。你还可以选择通过传递--push_to_hub
标志和--model_name
参数,将转换后的模型直接推送到Hugging Face Hub上。
python convert_rwkv_checkpoint_to_hf.py --repo_id RAW_HUB_REPO --checkpoint_file RAW_FILE --output_dir OUTPUT_DIR --push_to_hub --model_name dummy_user/converted-rwkv
文本生成
你可以使用AutoModelForCausalLM
和AutoTokenizer
类从模型中生成文本。展开以下部分,了解如何在不同场景下运行该模型:
💻 使用示例
基础用法
在CPU上运行模型
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-169m-pile")
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-169m-pile")
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(inputs["input_ids"], max_new_tokens=40)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
高级用法
在单个GPU上运行模型
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-169m-pile").to(0)
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-169m-pile")
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=40)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
在GPU上以半精度运行模型
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-169m-pile", torch_dtype=torch.float16).to(0)
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-169m-pile")
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=40)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
在多个GPU上运行模型
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-169m-pile", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-169m-pile")
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=40)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
📄 许可证
如果你使用此模型,请考虑引用原仓库此处的原始工作。