🚀 RWKV-4 | 14B参数聊天版本(Raven)模型卡片
RWKV是由Bo Peng领导的项目。您可以在Johan Wind的博客文章此处和此处了解更多关于模型架构的信息。您还可以加入RWKV Discord服务器来深入了解该项目。

📚 目录
- 简要说明
- 模型详情
- 使用方法
- 引用信息
TL;DR
以下是来自原始仓库的描述:
RWKV是一种具有Transformer级大型语言模型性能的循环神经网络(RNN)。它可以像GPT一样直接进行训练(可并行化)。它结合了RNN和Transformer的优点——性能出色、推理速度快、节省显存、训练速度快、具有“无限”上下文长度,并且能免费获取句子嵌入。
✨ 主要特性
模型详情
模型架构的详细信息可在上述博客文章以及Hugging Face关于集成的博客文章中找到。
📦 安装指南
将原始权重转换为Hugging Face格式
您可以使用convert_rwkv_checkpoint_to_hf.py
脚本,通过指定原始权重的仓库ID、文件名和输出目录来进行转换。您还可以选择通过传递--push_to_hub
标志和--model_name
参数,将转换后的模型直接推送到Hugging Face Hub,以指定推送转换后权重的位置。
python convert_rwkv_checkpoint_to_hf.py --repo_id RAW_HUB_REPO --checkpoint_file RAW_FILE --output_dir OUTPUT_DIR --push_to_hub --model_name dummy_user/converted-rwkv
💻 使用示例
生成文本
您可以使用AutoModelForCausalLM
和AutoTokenizer
类从模型生成文本。展开以下部分,了解如何在不同场景下运行模型:
“Raven”模型需要以特定方式进行提示,您可以在集成博客文章中了解更多相关信息。
基础用法
在CPU上运行模型
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-14b")
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-14b")
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(inputs["input_ids"], max_new_tokens=40)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
高级用法
在单个GPU上运行模型
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-14b").to(0)
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-14b")
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=40)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
在GPU上以半精度运行模型
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-14b", torch_dtype=torch.float16).to(0)
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-14b")
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=40)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
在多个GPU上运行模型
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-14b", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-14b")
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=40)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
📄 许可证
引用信息
如果您使用此模型,请考虑引用原始工作,原始仓库位于此处。
数据集信息
属性 |
详情 |
训练数据 |
EleutherAI/pile |