Chemvlm 26B
模型简介
ChemVLM是基于ChemLLM-20B和InterViT-6B进行微调的多模态大语言模型,旨在探索化学领域的多模态能力,支持图像文本到文本的任务。
模型特点
多模态能力
结合文本和图像处理能力,适用于化学领域的多模态任务。
化学领域专用
针对化学领域进行优化,能够理解和生成与化学相关的文本和图像内容。
大规模模型
基于ChemLLM-20B和InterViT-6B的大规模模型,具备强大的推理和生成能力。
模型能力
化学文本生成
化学图像分析
多模态推理
化学知识问答
使用案例
化学研究
化学文献分析
分析化学文献中的文本和图像,提取关键信息。
提高文献阅读效率,快速获取关键化学信息。
化学实验报告生成
根据实验图像和数据生成详细的实验报告。
自动化实验报告撰写,减少研究人员的工作负担。
教育
化学教学辅助
生成化学教学材料和练习题,辅助教师和学生。
提升教学效率,增强学生学习体验。
🚀 ChemVLM-26B
ChemVLM-26B 是一个用于化学领域的多模态大语言模型,它基于 ChemLLM-20B 和 InterViT-6B 进行微调,能够处理图像和文本信息,实现图像文本到文本的转换任务。
🚀 快速开始
你可以在 https://github.com/AI4Chem/ChemVlm 找到该项目的数据集以及训练和评估代码。同时,你也可以使用 在线演示 快速体验这个模型。
⚠️ 重要提示
请使用
transformers==4.37.2
以确保模型正常工作。
💻 使用示例
基础用法
from transformers import AutoTokenizer, AutoModel
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=6):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
path = "AI4Chem/ChemVLM-26B"
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).eval().cuda()
# Otherwise, you need to set device_map='auto' to use multiple GPUs for inference.
# import os
# os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# model = AutoModel.from_pretrained(
# path,
# torch_dtype=torch.bfloat16,
# low_cpu_mem_usage=True,
# trust_remote_code=True,
# device_map='auto').eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
generation_config = dict(
num_beams=1,
max_new_tokens=512,
do_sample=False,
)
# single-round single-image conversation
question = "请详细描述图片" # Please describe the picture in detail
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(question, response)
# multi-round single-image conversation
question = "请详细描述图片" # Please describe the picture in detail
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(question, response)
question = "请根据图片写一首诗" # Please write a poem according to the picture
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(question, response)
# multi-round multi-image conversation
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
question = "详细描述这两张图片" # Describe the two pictures in detail
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(question, response)
question = "这两张图片的相同点和区别分别是什么" # What are the similarities and differences between these two pictures
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(question, response)
# batch inference (single image per sample)
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
image_counts = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
questions = ["Describe the image in detail."] * len(image_counts)
responses = model.batch_chat(tokenizer, pixel_values,
image_counts=image_counts,
questions=questions,
generation_config=generation_config)
for question, response in zip(questions, responses):
print(question)
print(response)
📚 详细文档
引用信息
你可以通过以下 BibTeX 格式引用该模型的相关论文:
@inproceedings{li2025chemvlm,
title={Chemvlm: Exploring the power of multimodal large language models in chemistry area},
author={Li, Junxian and Zhang, Di and Wang, Xunzhi and Hao, Zeying and Lei, Jingdi and Tan, Qian and Zhou, Cai and Liu, Wei and Yang, Yaotian and Xiong, Xinrui and others},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={39},
number={1},
pages={415--423},
year={2025}
}
📄 许可证
本项目采用 MIT 许可证发布。
👏 致谢
ChemVLM 基于 InternVL 构建。
InternVL 在开发过程中参考了以下项目的代码:OpenAI CLIP、Open CLIP、CLIP Benchmark、EVA、InternImage、ViT-Adapter、MMSegmentation、Transformers、DINOv2、BLIP-2、Qwen-VL 和 LLaVA-1.5。感谢他们的杰出工作!
Clip Vit Large Patch14
CLIP是由OpenAI开发的视觉-语言模型,通过对比学习将图像和文本映射到共享的嵌入空间,支持零样本图像分类
图像生成文本
C
openai
44.7M
1,710
Clip Vit Base Patch32
CLIP是由OpenAI开发的多模态模型,能够理解图像和文本之间的关系,支持零样本图像分类任务。
图像生成文本
C
openai
14.0M
666
Siglip So400m Patch14 384
Apache-2.0
SigLIP是基于WebLi数据集预训练的视觉语言模型,采用改进的sigmoid损失函数,优化了图像-文本匹配任务。
图像生成文本
Transformers

S
google
6.1M
526
Clip Vit Base Patch16
CLIP是由OpenAI开发的多模态模型,通过对比学习将图像和文本映射到共享的嵌入空间,实现零样本图像分类能力。
图像生成文本
C
openai
4.6M
119
Blip Image Captioning Base
Bsd-3-clause
BLIP是一个先进的视觉-语言预训练模型,擅长图像描述生成任务,支持条件式和非条件式文本生成。
图像生成文本
Transformers

B
Salesforce
2.8M
688
Blip Image Captioning Large
Bsd-3-clause
BLIP是一个统一的视觉-语言预训练框架,擅长图像描述生成任务,支持条件式和无条件式图像描述生成。
图像生成文本
Transformers

B
Salesforce
2.5M
1,312
Openvla 7b
MIT
OpenVLA 7B是一个基于Open X-Embodiment数据集训练的开源视觉-语言-动作模型,能够根据语言指令和摄像头图像生成机器人动作。
图像生成文本
Transformers 英语

O
openvla
1.7M
108
Llava V1.5 7b
LLaVA 是一款开源多模态聊天机器人,基于 LLaMA/Vicuna 微调,支持图文交互。
图像生成文本
Transformers

L
liuhaotian
1.4M
448
Vit Gpt2 Image Captioning
Apache-2.0
这是一个基于ViT和GPT2架构的图像描述生成模型,能够为输入图像生成自然语言描述。
图像生成文本
Transformers

V
nlpconnect
939.88k
887
Blip2 Opt 2.7b
MIT
BLIP-2是一个视觉语言模型,结合了图像编码器和大型语言模型,用于图像到文本的生成任务。
图像生成文本
Transformers 英语

B
Salesforce
867.78k
359
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98