đ ChemVLM-26B
ChemVLM-26B is a multimodal large language model designed for the chemistry area, enabling image - text - to - text tasks.
đ Quick Start
You can find our datasets and code of training and evaluation at https://github.com/AI4Chem/ChemVlm. Finetune based on ChemLLM - 20B and InterViT - 6B.
⨠Features
- Multimodal Capability: Supports image - text - to - text tasks, suitable for various scenarios in the chemistry area.
- Flexible Deployment: Can be deployed on a single GPU (with 80G A100) or multiple GPUs for inference.
đģ Usage Examples
Basic Usage
from transformers import AutoTokenizer, AutoModel
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=6):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
path = "AI4Chem/ChemVLM-26B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
generation_config = dict(
num_beams=1,
max_new_tokens=512,
do_sample=False,
)
question = "Please describe the picture in detail"
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(question, response)
question = "Please describe the picture in detail"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(question, response)
question = "Please write a poem according to the picture"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(question, response)
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
question = "Describe the two pictures in detail"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(question, response)
question = "What are the similarities and differences between these two pictures"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(question, response)
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
image_counts = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
questions = ["Describe the image in detail."] * len(image_counts)
responses = model.batch_chat(tokenizer, pixel_values,
image_counts=image_counts,
questions=questions,
generation_config=generation_config)
for question, response in zip(questions, responses):
print(question)
print(response)
Advanced Usage
The above code already demonstrates various advanced usage scenarios, such as multi - round conversations and batch inferences.
đ Documentation
Citation
You can cite our work using the following BibTeX:
@inproceedings{li2025chemvlm,
title={Chemvlm: Exploring the power of multimodal large language models in chemistry area},
author={Li, Junxian and Zhang, Di and Wang, Xunzhi and Hao, Zeying and Lei, Jingdi and Tan, Qian and Zhou, Cai and Liu, Wei and Yang, Yaotian and Xiong, Xinrui and others},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={39},
number={1},
pages={415--423},
year={2025}
}
The arXiv link is arxiv.org/abs/2408.07246.
Model Usage
We provide an example code to run ChemVLM - 26B using transformers
. You can also use our online demo for a quick experience of this model.
â ī¸ Important Note
Please use transformers==4.37.2 to ensure the model works normally.
đ License
This project is released under the MIT license.
đ§ Technical Details
ChemVLM is built on InternVL. InternVL is built with reference to the code of the following projects: OpenAI CLIP, Open CLIP, CLIP Benchmark, EVA, InternImage, [ViT - Adapter](https://github.com/czczup/ViT - Adapter), [MMSegmentation](https://github.com/open - mmlab/mmsegmentation), Transformers, DINOv2, BLIP - 2, [Qwen - VL](https://github.com/QwenLM/Qwen - VL/tree/master/eval_mm), and [LLaVA - 1.5](https://github.com/haotian - liu/LLaVA). Thanks for their awesome work!