Ruri Reranker Large
琉璃重排序器是一个日语通用重排序模型,基于Sentence Transformers架构,专门用于日语文本相关性排序任务。
下载量 2,538
发布时间 : 8/20/2024
模型简介
该模型是一个日语文本重排序器,能够对查询和文档对进行相关性评分,适用于信息检索系统的结果重排序。
模型特点
高性能日语重排序
在多个日语基准测试中表现优异,特别是在JQaRA、JaCWIR和MIRACL数据集上取得领先成绩
基于Sentence Transformers
使用CrossEncoder架构,专门为查询-文档对相关性评分优化
大模型规模
拥有3.37亿参数(其中3.03亿为嵌入层参数),提供更强的语义理解能力
模型能力
查询-文档相关性评分
信息检索结果重排序
日语文本理解
使用案例
信息检索
搜索引擎结果重排序
对搜索引擎返回的结果进行二次排序,提高最相关结果的排名
在JQaRA数据集上达到77.1的nDCG@10分数
问答系统答案排序
对问答系统返回的候选答案进行相关性排序
在MIRACL数据集上达到96.1的nDCG@10分数
🚀 瑠璃重排器(Ruri-Reranker):日语通用重排器
瑠璃重排器(Ruri-Reranker)是一款日语通用重排器,基于Sentence Transformers库,能够对文本进行高效的重排,在多个基准测试中表现出色。
🚀 快速开始
安装Sentence Transformers库
首先,你需要安装Sentence Transformers库:
pip install -U sentence-transformers
加载模型并进行推理
安装完成后,你可以加载模型并进行推理:
from sentence_transformers import CrossEncoder
# 从🤗 Hub下载模型
model = CrossEncoder("cl-nagoya/ruri-reranker-large")
inputs = [
[
"瑠璃色はどんな色?",
"瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
],
[
"瑠璃色はどんな色?",
"ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
],
[
"ワシやタカのように、鋭いくちばしと爪を持った大型の鳥類を総称して「何類」というでしょう?",
"ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
],
[
"ワシやタカのように、鋭いくちばしと爪を持った大型の鳥類を総称して「何類」というでしょう?",
"瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
],
]
scores = model.predict(inputs)
print(scores)
# [0.99999535 0.7374149 0.9970592 0.00682232]
result = model.rank(
query="瑠璃色はどんな色?",
documents=[
"ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
"瑠璃、または琉璃(るり)は、仏教の七宝の一つ。サンスクリットの vaiḍūrya またはそのプラークリット形の音訳である。金緑石のこととも、ラピスラズリであるともいう[1]。",
"瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
],
)
print(result)
# [
# {'corpus_id': 2, 'score': 0.99999535},
# {'corpus_id': 1, 'score': 0.97759527},
# {'corpus_id': 0, 'score': 0.73741615},
# ]
✨ 主要特性
- 高性能:在多个基准测试中表现优异,如JQaRA、JaCWIR和MIRACL。
- 易于使用:基于Sentence Transformers库,方便集成到现有项目中。
- 多语言支持:支持日语,适用于日语相关的文本重排任务。
📦 安装指南
安装Sentence Transformers库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import CrossEncoder
# 从🤗 Hub下载模型
model = CrossEncoder("cl-nagoya/ruri-reranker-large")
inputs = [
[
"瑠璃色はどんな色?",
"瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
],
[
"瑠璃色はどんな色?",
"ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
],
[
"ワシやタカのように、鋭いくちばしと爪を持った大型の鳥類を総称して「何類」というでしょう?",
"ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
],
[
"ワシやタカのように、鋭いくちばしと爪を持った大型の鳥類を総称して「何類」というでしょう?",
"瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
],
]
scores = model.predict(inputs)
print(scores)
# [0.99999535 0.7374149 0.9970592 0.00682232]
高级用法
result = model.rank(
query="瑠璃色はどんな色?",
documents=[
"ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
"瑠璃、または琉璃(るり)は、仏教の七宝の一つ。サンスクリットの vaiḍūrya またはそのプラークリット形の音訳である。金緑石のこととも、ラピスラズリであるともいう[1]。",
"瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
],
)
print(result)
# [
# {'corpus_id': 2, 'score': 0.99999535},
# {'corpus_id': 1, 'score': 0.97759527},
# {'corpus_id': 0, 'score': 0.73741615},
# ]
📚 详细文档
基准测试
模型 | 参数量(不含嵌入层) | JQaRA | JaCWIR | MIRACL |
---|---|---|---|---|
hotchpotch/japanese-reranker-cross-encoder-xsmall-v1 | 107M(11M) | 61.4 | 93.8 | 90.6 |
hotchpotch/japanese-reranker-cross-encoder-small-v1 | 118M(21M) | 62.5 | 93.9 | 92.2 |
hotchpotch/japanese-reranker-cross-encoder-base-v1 | 111M(86M) | 67.1 | 93.4 | 93.3 |
hotchpotch/japanese-reranker-cross-encoder-large-v1 | 337M(303M) | 71.0 | 93.6 | 91.5 |
hotchpotch/japanese-bge-reranker-v2-m3-v1 | 568M(303M) | 69.2 | 93.7 | 94.7 |
BAAI/bge-reranker-v2-m3 | 568M(303M) | 67.3 | 93.4 | 94.9 |
Ruri-Reranker-Small | 68M(43M) | 64.5 | 92.6 | 92.3 |
Ruri-Reranker-Base | 111M(86M) | 74.3 | 93.5 | 95.6 |
Ruri-Reranker-Large(本模型) | 337M(303M) | 77.1 | 94.1 | 96.1 |
模型详情
属性 | 详情 |
---|---|
模型类型 | Sentence Transformer |
基础模型 | cl-nagoya/ruri-reranker-stage1-large |
最大序列长度 | 512 tokens |
语言 | 日语 |
许可证 | Apache 2.0 |
论文 | https://arxiv.org/abs/2409.07737 |
训练详情
框架版本
- Python: 3.10.13
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu118
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
📄 许可证
本模型根据 Apache License, Version 2.0 发布。
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98