🚀 ONNX将roberta-base转换用于问答任务
本项目将 deepset/roberta-base-squad2 模型进行ONNX转换,用于问答任务。该转换后的模型能在问答场景中高效运行,为用户提供准确的答案抽取功能。
🚀 快速开始
模型版本说明
这是模型的第2版。关于更新原因,请参考FARM仓库中的 此GitHub问题。如果您想使用第1版,在Transformers 3.5中加载模型时指定 revision="v1.0"
。例如:
model_name = "deepset/roberta-base-squad2"
pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering")
✨ 主要特性
- 语言模型:roberta-base
- 语言:英语
- 下游任务:抽取式问答
- 训练数据:SQuAD 2.0
- 评估数据:SQuAD 2.0
- 代码示例:请参考 FARM 中的 示例
- 基础设施:4x Tesla v100
模型信息表格
属性 |
详情 |
模型类型 |
roberta-base |
训练数据 |
SQuAD 2.0 |
评估数据 |
SQuAD 2.0 |
代码示例 |
FARM示例 |
基础设施 |
4x Tesla v100 |
📦 安装指南
文档未提及具体安装步骤,故跳过此章节。
💻 使用示例
基础用法
在Transformers中使用
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/roberta-base-squad2"
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
在FARM中使用
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer
model_name = "deepset/roberta-base-squad2"
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)
在haystack中使用
若要进行大规模问答(即处理多篇文档而非单个段落),您也可以在 haystack 中加载该模型:
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2")
📚 详细文档
超参数设置
batch_size = 96
n_epochs = 2
base_LM_model = "roberta-base"
max_seq_len = 386
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
蒸馏模型替代方案
请注意,我们还发布了该模型的蒸馏版本 deepset/tinyroberta-squad2。蒸馏模型的预测质量相当,但运行速度是基础模型的两倍。
性能评估
使用 官方评估脚本 在SQuAD 2.0开发集上进行评估,结果如下:
"exact": 79.87029394424324,
"f1": 82.91251169582613,
"total": 11873,
"HasAns_exact": 77.93522267206478,
"HasAns_f1": 84.02838248389763,
"HasAns_total": 5928,
"NoAns_exact": 81.79983179142137,
"NoAns_f1": 81.79983179142137,
"NoAns_total": 5945
🔧 技术细节
文档未提供足够详细的技术实现细节,故跳过此章节。
📄 许可证
本项目采用CC BY 4.0许可证。
👥 作者信息
- Branden Chan:
branden.chan [at] deepset.ai
- Timo Möller:
timo.moeller [at] deepset.ai
- Malte Pietsch:
malte.pietsch [at] deepset.ai
- Tanay Soni:
tanay.soni [at] deepset.ai
🌟 关于我们
我们通过开源将自然语言处理技术引入工业界!
我们的重点领域:特定行业的语言模型和大规模问答系统。
我们的部分工作成果:
联系我们:
Twitter | LinkedIn | Slack | GitHub讨论区 | 网站
顺便一提:我们正在招聘!