Reranker Msmarco MiniLM L12 H384 Uncased Lambdaloss
这是一个基于MiniLM-L12-H384-uncased微调的交叉编码器模型,用于文本重排序和语义搜索任务。
下载量 1,019
发布时间 : 3/14/2025
模型简介
该模型计算文本对的分数,主要用于文本重排序和语义搜索场景,能够有效提升搜索结果的准确性。
模型特点
高效文本重排序
能够快速计算文本对的相关性分数,适用于大规模搜索结果的重新排序
LambdaLoss优化
使用LambdaLoss损失函数训练,优化了排序任务中的指标
轻量级模型
基于MiniLM架构,在保持性能的同时减少了模型大小和计算需求
模型能力
文本相关性评分
搜索结果重排序
语义搜索
问答系统排序
使用案例
信息检索
搜索引擎结果优化
对搜索引擎返回的初步结果进行重新排序,提高相关结果排名
在NanoMSMARCO数据集上达到0.6352的平均精度
问答系统
答案候选排序
对问答系统生成的多个候选答案进行相关性排序
在NanoNQ数据集上达到0.7174的平均精度
🚀 基于microsoft/MiniLM-L12-H384-uncased的CrossEncoder
这是一个基于 microsoft/MiniLM-L12-H384-uncased 微调的 Cross Encoder 模型,使用了 sentence-transformers 库。它可以计算文本对的得分,用于文本重排序和语义搜索。
✨ 主要特性
- 基于
microsoft/MiniLM-L12-H384-uncased
模型微调,适用于文本重排序和语义搜索任务。 - 支持使用
sentence-transformers
库直接进行推理和微调。 - 提供了多种评估指标,如
map
、mrr@10
和ndcg@10
。
📦 安装指南
首先,安装 Sentence Transformers 库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import CrossEncoder
# 从 🤗 Hub 下载模型
model = CrossEncoder("tomaarsen/reranker-msmarco-MiniLM-L12-H384-uncased-lambdaloss")
# 获取文本对的得分
pairs = [
['一个鸡蛋有多少卡路里', '一个鸡蛋平均含有 55 到 80 卡路里,具体取决于其大小。'],
['一个鸡蛋有多少卡路里', '鸡蛋白的卡路里非常低,没有脂肪,没有胆固醇,并且富含蛋白质。'],
['一个鸡蛋有多少卡路里', '鸡蛋中的大部分卡路里来自中间的黄色蛋黄。'],
]
scores = model.predict(pairs)
print(scores.shape)
# (3,)
# 或者根据与单个文本的相似度对不同文本进行排序
ranks = model.rank(
'一个鸡蛋有多少卡路里',
[
'一个鸡蛋平均含有 55 到 80 卡路里,具体取决于其大小。',
'鸡蛋白的卡路里非常低,没有脂肪,没有胆固醇,并且富含蛋白质。',
'鸡蛋中的大部分卡路里来自中间的黄色蛋黄。',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | Cross Encoder |
基础模型 | microsoft/MiniLM-L12-H384-uncased |
最大序列长度 | 512 个标记 |
输出标签数量 | 1 个标签 |
模型来源
- 文档:Sentence Transformers 文档
- 文档:Cross Encoder 文档
- 仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Cross Encoders
评估
指标
Cross Encoder 重排序
- 数据集:
NanoMSMARCO_R100
、NanoNFCorpus_R100
和NanoNQ_R100
- 评估器:使用
CrossEncoderRerankingEvaluator
进行评估,参数如下:
{
"at_k": 10,
"always_rerank_positives": true
}
指标 | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
---|---|---|---|
map | 0.6352 (+0.1456) | 0.3389 (+0.0779) | 0.7174 (+0.2978) |
mrr@10 | 0.6298 (+0.1523) | 0.5872 (+0.0874) | 0.7283 (+0.3016) |
ndcg@10 | 0.6981 (+0.1577) | 0.4036 (+0.0786) | 0.7584 (+0.2577) |
Cross Encoder Nano BEIR
- 数据集:
NanoBEIR_R100_mean
- 评估器:使用
CrossEncoderNanoBEIREvaluator
进行评估,参数如下:
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
指标 | 值 |
---|---|
map | 0.5638 (+0.1738) |
mrr@10 | 0.6485 (+0.1805) |
ndcg@10 | 0.6200 (+0.1647) |
训练详情
训练数据集
未命名数据集
- 大小:399,282 个训练样本
- 列:
query
、docs
和labels
- 近似统计信息(基于前 1000 个样本):
| | 查询 | 文档 | 标签 |
| ---- | ---- | ---- | ---- |
| 类型 | 字符串 | 列表 | 列表 |
| 详情 |
- 最小:6 个字符
- 平均:33.0 个字符
- 最大:154 个字符
- 最小:6 个元素
- 平均:13.23 个元素
- 最大:20 个元素
- 最小:6 个元素
- 平均:13.23 个元素
- 最大:20 个元素
- 样本:
| 查询 | 文档 | 标签 |
| ---- | ---- | ---- |
|
intel current gen core processors
|["Identical or more capable versions of Core processors are also sold as Xeon processors for the server and workstation markets. As of 2017 the current lineup of Core processors included the Intel Core i7, Intel Core i5, and Intel Core i3, along with the Y - Series Intel Core CPU's.", "Most noticeably that Panasonic switched from Intel Core 2 Duo power to the latest Intel Core i3 and i5 processors. The three processors available in the new Toughbook 31, together with the new Mobile Intel QM57 Express chipset, are all part of Intel's Calpella platform.", 'The new 7th Gen Intel Core i7-7700HQ processor gives the 14-inch Razer Blade 2.8GHz of quad-core processing power and Turbo Boost speeds, which automatically increases the speed of active cores â\x80\x93 up to 3.8GHz.', 'Key difference: Intel Core i3 is a type of dual-core processor. i5 processors have 2 to 4 cores. A dual-core processor is a type of a central processing unit (CPU) that has two complete execution cores. Hence, it has t...
|[1, 0, 0, 0, 0, ...]
| |renovation definition
|['Renovation is the act of renewing or restoring something. If your kitchen is undergoing a renovation, thereâ\x80\x99s probably plaster and paint all over the place and you should probably get take-out.', 'NEW GALLERY SPACES OPENING IN 2017. In early 2017, our fourth floor will be transformed into a new destination for historical education and innovation. During the current renovation, objects from our permanent collection are on view throughout the Museum.', 'A same level house extension in Australia will cost approximately $60,000 to $200,000+. Adding a room or extending your living area on the ground floor are affordable ways of creating more space.Here are some key points to consider that will help you keep your renovation costs in check.RTICLE Stephanie Matheson. A same level house extension in Australia will cost approximately $60,000 to $200,000+. Adding a room or extending your living area on the ground floor are affordable ways of creating more space. Here are some key points...
|[1, 0, 0, 0, 0, ...]
| |what is a girasol
|['Girasol definition, an opal that reflects light in a bright luminous glow. See more.', 'Also, a type of opal from Mexico, referred to as Mexican water opal, is a colorless opal which exhibits either a bluish or golden internal sheen. Girasol opal is a term sometimes mistakenly and improperly used to refer to fire opals, as well as a type of transparent to semitransparent type milky quartz from Madagascar which displays an asterism, or star effect, when cut properly.', 'What is the meaning of Girasol? How popular is the baby name Girasol? Learn the origin and popularity plus how to pronounce Girasol', 'There are 5 basic types of opal. These types are Peruvian Opal, Fire Opal, Girasol Opal, Common opal and Precious Opal. There are 5 basic types of opal. These types are Peruvian Opal, Fire Opal, Girasol Opal, Common opal and Precious Opal.', 'girasol (Ë\x88dÊ\x92ɪrÉ\x99Ë\x8csÉ\x92l; -Ë\x8csÉ\x99Ê\x8al) , girosol or girasole n (Jewellery) a type of opal that has a red or pink glow in br...
|[1, 0, 0, 0, 0, ...]
| - 损失函数:使用
LambdaLoss
,参数如下:
{
"weighting_scheme": "sentence_transformers.cross_encoder.losses.LambdaLoss.NDCGLoss2PPScheme",
"k": null,
"sigma": 1.0,
"eps": 1e-10,
"reduction_log": "binary",
"activation_fct": "torch.nn.modules.linear.Identity",
"mini_batch_size": 16
}
评估数据集
未命名数据集
- 大小:1,000 个评估样本
- 列:
query
、docs
和labels
- 近似统计信息(基于前 1000 个样本):
| | 查询 | 文档 | 标签 |
| ---- | ---- | ---- | ---- |
| 类型 | 字符串 | 列表 | 列表 |
| 详情 |
- 最小:10 个字符
- 平均:33.63 个字符
- 最大:137 个字符
- 最小:3 个元素
- 平均:12.50 个元素
- 最大:20 个元素
- 最小:3 个元素
- 平均:12.50 个元素
- 最大:20 个元素
- 样本:
| 查询 | 文档 | 标签 |
| ---- | ---- | ---- |
|
can marijuana help dementia
|["Cannabis 'could stop dementia in its tracks'. Cannabis may help keep Alzheimer's disease at bay. In experiments, a marijuana-based medicine triggered the formation of new brain cells and cut inflammation linked to dementia. The researchers say that using the information to create a pill suitable for people could help prevent or delay the onset of Alzheimer's.", 'Marijuana (cannabis): Marijuana in any form is not allowed on aircraft and is not allowed in the secure part of the airport (beyond the TSA screening areas). In addition it is illegal to import marijuana or marijuana-related items into the US.', 'Depakote and dementia - Can dementia be cured? Unfortunately, no. Dementia is a progressive disease. Even available treatments only slow progression or tame symptoms.', 'Marijuana Prices. The price of marijuana listed below is the typical price to buy marijuana on the black market in U.S. dollars. How much marijuana cost and the sale price of marijuana are based upon the United Natio...
|[1, 0, 0, 0, 0, ...]
| |what are carcinogen
|['Written By: Carcinogen, any of a number of agents that can cause cancer in humans. They can be divided into three major categories: chemical carcinogens (including those from biological sources), physical carcinogens, and oncogenic (cancer-causing) viruses. 1 Most carcinogens, singly or in combination, produce cancer by interacting with DNA in cells and thereby interfering with normal cellular function.', 'Tarragon (Artemisia dracunculus) is a species of perennial herb in the sunflower family. It is widespread in the wild across much of Eurasia and North America, and is cultivated for culinary and medicinal purposes in many lands.One sub-species, Artemisia dracunculus var. sativa, is cultivated for use of the leaves as an aromatic culinary herb.arragon has an aromatic property reminiscent of anise, due to the presence of estragole, a known carcinogen and teratogen in mice. The European Union investigation revealed that the danger of estragole is minimal even at 100â\x80\x931,000 tim...
|[1, 0, 0, 0, 0, ...]
| |who played ben geller in friends
|["Noelle and Cali aren't the only twins to have played one child character in Friends. Double vision: Ross' cheeky son Ben (pictured), from his first marriage to Carol, was also played by twins, Dylan and Cole Sprouse, who are now 22.", 'Update 7/29/06: There are now three â\x80\x9cTeaching Pastorsâ\x80\x9d at Applegate Christian Fellowship, according to their web site. Jon Courson is now back at Applegate. The other two listed as Teaching Pastors are Jonâ\x80\x99s two sons: Peter John and Ben Courson.on Courson has been appreciated over the years by many people who are my friends and whom I respect. I believe that he preaches the real Jesus and the true Gospel, for which I rejoice. I also believe that his ministry and church organization is a reasonable example with which to examine important issues together.', 'Ben 10 (Reboot) Ben 10: Omniverse is the fourth iteration of the Ben 10 franchise, and it is the sequel of Ben 10: Ultimate Alien. Ben was all set to be a solo hero with his n...
|[1, 0, 0, 0, 0, ...]
| - 损失函数:使用
LambdaLoss
,参数如下:
{
"weighting_scheme": "sentence_transformers.cross_encoder.losses.LambdaLoss.NDCGLoss2PPScheme",
"k": null,
"sigma": 1.0,
"eps": 1e-10,
"reduction_log": "binary",
"activation_fct": "torch.nn.modules.linear.Identity",
"mini_batch_size": 16
}
训练超参数
非默认超参数
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Trueload_best_model_at_end
: True
所有超参数
点击展开
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
训练日志
点击展开
轮次 | 步骤 | 训练损失 | 验证损失 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
---|---|---|---|---|---|---|---|
-1 | -1 | - | - | 0.0086 (-0.5318) | 0.2639 (-0.0612) | 0.0000 (-0.5006) | 0.0908 (-0.3645) |
0.0000 | 1 | 0.8912 | - | - | - | - | - |
0.0080 | 200 | 0.8246 | - | - | - | - | - |
0.0160 | 400 | 0.8117 | - | - | - | - | - |
0.0240 | 600 | 0.4376 | - | - | - | - | - |
0.0321 | 800 | 0.3271 | - | - | - | - | - |
0.0401 | 1000 | 0.2819 | 0.2442 | 0.6288 (+0.0884) | 0.4289 (+0.1039) | 0.7117 (+0.2111) | 0.5898 (+0.1344) |
0.0481 | 1200 | 0.24 | - | - | - | - | - |
0.0561 | 1400 | 0.2296 | - | - | - | - | - |
0.0641 | 1600 | 0.2244 | - | - | - | - | - |
0.0721 | 1800 | 0.2057 | - | - | - | - | - |
0.0801 | 2000 | 0.1947 | 0.1775 | 0.6251 (+0.0846) | 0.4318 (+0.1068) | 0.7111 (+0.2105) | 0.5893 (+0.1340) |
0.0882 | 2200 | 0.1939 | - | - | - | - | - |
0.0962 | 2400 | 0.1996 | - | - | - | - | - |
0.1042 | 2600 | 0.1938 | - | - | - | - | - |
0.1122 | 2800 | 0.1928 | - | - | - | - | - |
0.1202 | 3000 | 0.1915 | 0.1684 | 0.6226 (+0.0822) | 0.4140 (+0.0890) | 0.7063 (+0.2057) | 0.5810 (+0.1256) |
0.1282 | 3200 | 0.1898 | - | - | - | - | - |
0.1362 | 3400 | 0.1931 | - | - | - | - | - |
0.1443 | 3600 | 0.1834 | - | - | - | - | - |
0.1523 | 3800 | 0.1813 | - | - | - | - | - |
0.1603 | 4000 | 0.1722 | 0.1594 | 0.6584 (+0.1180) | 0.4167 (+0.0916) | 0.7031 (+0.2025) | 0.5927 (+0.1374) |
0.1683 | 4200 | 0.1759 | - | - | - | - | - |
0.1763 | 4400 | 0.187 | - | - | - | - | - |
0.1843 | 4600 | 0.1682 | - | - | - | - | - |
0.1923 | 4800 | 0.1813 | - | - | - | - | - |
0.2004 | 5000 | 0.1744 | 0.1541 | 0.6275 (+0.0871) | 0.4591 (+0.1341) | 0.7101 (+0.2095) | 0.5989 (+0.1435) |
0.2084 | 5200 | 0.164 | - | - | - | - | - |
0.2164 | 5400 | 0.1758 | - | - | - | - | - |
0.2244 | 5600 | 0.1715 | - | - | - | - | - |
0.2324 | 5800 | 0.1766 | - | - | - | - | - |
0.2404 | 6000 | 0.1633 | 0.1513 | 0.5947 (+0.0543) | 0.4002 (+0.0751) | 0.7161 (+0.2155) | 0.5703 (+0.1150) |
0.2484 | 6200 | 0.1675 | - | - | - | - | - |
0.2565 | 6400 | 0.1615 | - | - | - | - | - |
0.2645 | 6600 | 0.1697 | - | - | - | - | - |
0.2725 | 6800 | 0.1743 | - | - | - | - | - |
0.2805 | 7000 | 0.1781 | 0.1539 | 0.6461 (+0.1056) | 0.4281 (+0.1030) | 0.7288 (+0.2281) | 0.6010 (+0.1456) |
0.2885 | 7200 | 0.1796 | - | - | - | - | - |
0.2965 | 7400 | 0.1681 | - | - | - | - | - |
0.3045 | 7600 | 0.1746 | - | - | - | - | - |
0.3126 | 7800 | 0.1726 | - | - | - | - | - |
0.3206 | 8000 | 0.1625 | 0.1474 | 0.6162 (+0.0757) | 0.4363 (+0.1113) | 0.7352 (+0.2346) | 0.5959 (+0.1405) |
0.3286 | 8200 | 0.1574 | - | - | - | - | - |
0.3366 | 8400 | 0.1672 | - | - | - | - | - |
0.3446 | 8600 | 0.1766 | - | - | - | - | - |
0.3526 | 8800 | 0.1714 | - | - | - | - | - |
0.3606 | 9000 | 0.163 | 0.1497 | 0.6337 (+0.0933) | 0.4559 (+0.1308) | 0.7306 (+0.2300) | 0.6067 (+0.1513) |
0.3686 | 9200 | 0.1626 | - | - | - | - | - |
0.3767 | 9400 | 0.1638 | - | - | - | - | - |
0.3847 | 9600 | 0.1603 | - | - | - | - | - |
0.3927 | 9800 | 0.1689 | - | - | - | - | - |
0.4007 | 10000 | 0.1629 | 0.1500 | 0.6451 (+0.1046) | 0.4330 (+0.1080) | 0.7338 (+0.2332) | 0.6040 (+0.1486) |
0.4087 | 10200 | 0.1644 | - | - | - | - | - |
0.4167 | 10400 | 0.1596 | - | - | - | - | - |
0.4247 | 10600 | 0.1655 | - | - | - | - | - |
0.4328 | 10800 | 0.1596 | - | - | - | - | - |
0.4408 | 11000 | 0.1608 | 0.1416 | 0.6706 (+0.1302) | 0.4425 (+0.1174) | 0.7462 (+0.2455) | 0.6197 (+0.1644) |
0.4488 | 11200 | 0.1676 | - | - | - | - | - |
0.4568 | 11400 | 0.1642 | - | - | - | - | - |
0.4648 | 11600 | 0.1558 | - | - | - | - | - |
0.4728 | 11800 | 0.1582 | - | - | - | - | - |
0.4808 | 12000 | 0.1605 | 0.1471 | 0.6626 (+0.1222) | 0.4141 (+0.0890) | 0.7162 (+0.2156) | 0.5976 (+0.1423) |
0.4889 | 12200 | 0.1692 | - | - | - | - | - |
0.4969 | 12400 | 0.1592 | - | - | - | - | - |
0.5049 | 12600 | 0.1584 | - | - | - | - | - |
0.5129 | 12800 | 0.1613 | - | - | - | - | - |
0.5209 | 13000 | 0.1626 | 0.1436 | 0.6800 (+0.1396) | 0.4200 (+0.0949) | 0.7336 (+0.2329) | 0.6112 (+0.1558) |
0.5289 | 13200 | 0.1551 | - | - | - | - | - |
0.5369 | 13400 | 0.1622 | - | - | - | - | - |
0.5450 | 13600 | 0.1646 | - | - | - | - | - |
0.5530 | 13800 | 0.1642 | - | - | - | - | - |
0.5610 | 14000 | 0.1697 | 0.1396 | 0.6808 (+0.1403) | 0.4255 (+0.1005) | 0.7257 (+0.2250) | 0.6107 (+0.1553) |
0.5690 | 14200 | 0.1565 | - | - | - | - | - |
0.5770 | 14400 | 0.158 | - | - | - | - | - |
0.5850 | 14600 | 0.1497 | - | - | - | - | - |
0.5930 | 14800 | 0.1627 | - | - | - | - | - |
0.6011 | 15000 | 0.1599 | 0.1374 | 0.6647 (+0.1243) | 0.4185 (+0.0935) | 0.7465 (+0.2458) | 0.6099 (+0.1545) |
0.6091 | 15200 | 0.1586 | - | - | - | - | - |
0.6171 | 15400 | 0.1566 | - | - | - | - | - |
0.6251 | 15600 | 0.158 | - | - | - | - | - |
0.6331 | 15800 | 0.1693 | - | - | - | - | - |
0.6411 | 16000 | 0.157 | 0.1377 | 0.6844 (+0.1440) | 0.4022 (+0.0771) | 0.7715 (+0.2708) | 0.6193 (+0.1640) |
0.6491 | 16200 | 0.1508 | - | - | - | - | - |
0.6572 | 16400 | 0.1477 | - | - | - | - | - |
0.6652 | 16600 | 0.1589 | - | - | - | - | - |
0.6732 | 16800 | 0.148 | - | - | - | - | - |
0.6812 | 17000 | 0.153 | 0.1376 | 0.6835 (+0.1431) | 0.4230 (+0.0980) | 0.7471 (+0.2464) | 0.6179 (+0.1625) |
0.6892 | 17200 | 0.1599 | - | - | - | - | - |
0.6972 | 17400 | 0.152 | - | - | - | - | - |
0.7052 | 17600 | 0.1516 | - | - | - | - | - |
0.7133 | 17800 | 0.1537 | - | - | - | - | - |
0.7213 | 18000 | 0.1579 | 0.1386 | 0.6919 (+0.1514) | 0.4111 (+0.0860) | 0.7572 (+0.2565) | 0.6200 (+0.1646) |
0.7293 | 18200 | 0.1548 | - | - | - | - | - |
0.7373 | 18400 | 0.1492 | - | - | - | - | - |
0.7453 | 18600 | 0.1496 | - | - | - | - | - |
0.7533 | 18800 | 0.1514 | - | - | - | - | - |
0.7613 | 19000 | 0.1538 | 0.14 | 0.6981 (+0.1577) | 0.4036 (+0.0786) | 0.7584 (+0.2577) | 0.6200 (+0.1647) |
0.7694 | 19200 | 0.1504 | - | - | - | - | - |
0.7774 | 19400 | 0.146 | - | - | - | - | - |
0.7854 | 19600 | 0.1467 | - | - | - | - | - |
0.7934 | 19800 | 0.1542 | - | - | - | - | - |
0.8014 | 20000 | 0.1567 | 0.1365 | 0.6786 (+0.1382) | 0.4081 (+0.0831) | 0.7565 (+0.2559) | 0.6144 (+0.1591) |
0.8094 | 20200 | 0.1561 | - | - | - | - | - |
0.8174 | 20400 | 0.1444 | - | - | - | - | - |
0.8255 | 20600 | 0.15 | - | - | - | - | - |
0.8335 | 20800 | 0.1552 | - | - | - | - | - |
0.8415 | 21000 | 0.1548 | 0.1368 | 0.6786 (+0.1381) | 0.4111 (+0.0860) | 0.7544 (+0.2537) | 0.6147 (+0.1593) |
0.8495 | 21200 | 0.1533 | - | - | - | - | - |
0.8575 | 21400 | 0.1538 | - | - | - | - | - |
0.8655 | 21600 | 0.1486 | - | - | - | - | - |
0.8735 | 21800 | 0.1542 | - | - | - | - | - |
0.8816 | 22000 | 0.1536 | 0.1369 | 0.6670 (+0.1266) | 0.4102 (+0.0851) | 0.7504 (+0.2497) | 0.6092 (+0.1538) |
0.8896 | 22200 | 0.1604 | - | - | - | - | - |
0.8976 | 22400 | 0.1498 | - | - | - | - | - |
0.9056 | 22600 | 0.1563 | - | - | - | - | - |
0.9136 | 22800 | 0.154 | - | - | - | - | - |
0.9216 | 23000 | 0.1553 | 0.1363 | 0.6845 (+0.1441) | 0.4134 (+0.0884) | 0.7447 (+0.2441) | 0.6142 (+0.1589) |
0.9296 | 23200 | 0.1488 | - | - | - | - | - |
0.9377 | 23400 | 0.1489 | - | - | - | - | - |
0.9457 | 23600 | 0.1456 | - | - | - | - | - |
0.9537 | 23800 | 0.1561 | - | - | - | - | - |
0.9617 | 24000 | 0.1485 | 0.1374 | 0.6811 (+0.1407) | 0.4111 (+0.0861) | 0.7516 (+0.2510) | 0.6146 (+0.1592) |
0.9697 | 24200 | 0.1462 | - | - | - | - | - |
0.9777 | 24400 | 0.1472 | - | - | - | - | - |
0.9857 | 24600 | 0.1536 | - | - | - | - | - |
0.9937 | 24800 | 0.157 | - | - | - | - | - |
-1 | -1 | - | - | 0.6981 (+0.1577) | 0.4036 (+0.0786) | 0.7584 (+0.2577) | 0.6200 (+0.1647) |
- 加粗行表示保存的检查点。
环境影响
使用 CodeCarbon 测量碳排放:
- 能源消耗:2.214 千瓦时
- 碳排放:0.861 千克二氧化碳
- 使用时长:7.301 小时
训练硬件
- 是否使用云服务:否
- GPU 型号:1 x NVIDIA GeForce RTX 3090
- CPU 型号:13th Gen Intel(R) Core(TM) i7-13700K
- 内存大小:31.78 GB
框架版本
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
📄 许可证
本模型使用 apache-2.0
许可证。
📚 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
LambdaLoss
@inproceedings{wang2018lambdaloss,
title={The lambdaloss framework for ranking metric optimization},
author={Wang, Xuanhui and Li, Cheng and Golbandi, Nadav and Bendersky, Michael and Najork, Marc},
booktitle={Proceedings of the 27th ACM international conference on information and knowledge management},
pages={1313--1322},
year={2018}
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98